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Dynamical realizations of the l-conformal Galilei algebra and its NewtonÄHooke counterpart in
terms of the second-order differential equations are discussed.
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INTRODUCTION

Conformal many-body mechanics in one dimension is being extensively investigated for
more than four decades. In the early days, the issues of integrability and exact solvability
were dominant [1, 2]. More recently, various supersymmetric extensions [3Ä5] attracted
considerable interest (for a review and references to the original literature, see [6]). As d > 1
is physically more realistic, it is natural to wonder what happens beyond one dimension. This
invokes nonrelativistic conformal algebras. Such algebras also play an important role within
the context of the nonrelativistic AdS/CFT correspondence [7] which motivated extensive
recent studies in [8Ä32].

In general, conformal extensions of the Galilei algebra [33] or its NewtonÄHooke counter-
part 2 [21] are parameterized by a positive half-integer l such that (2l + 1) vector generators
enter the algebra. Along with spatial translations and the Galilei boosts, they involve accel-
erations. In constructing dynamical realizations, generators in the algebra of symmetries are
linked to constants of the motion. As the number of functionally independent constants of the
motion needed to integrate a differential equation correlates with its order, dynamical realiza-
tions of the l-conformal Galilei algebra or its NewtonÄHooke counterpart in general involve
higher derivative terms (see, e.g., [8, 9, 20,23,24,28,29,31]). Dynamical realizations without
higher derivatives have been constructed quite recently in [19, 26, 27] within the method of
nonlinear realizations.

1E-mail: galajin@tpu.ru
2The NewtonÄHooke algebra is an analogue of the Galilei algebra in the presence of a universal cosmological

repulsion or attraction [34]. It is derived from the (anti-) de Sitter algebra by the nonrelativistic contraction in the
same way as the Galilei algebra is obtained from the Poincar	e algebra. In the limit in which a cosmological constant
tends to zero the NewtonÄHooke algebra reproduces the Galilei algebra.
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The purpose of this work is to review the peculiar features of the formulations proposed
in [26,27] with a particular emphasis on the qualitative difference between the results obtained
for the l-conformal Galilei algebra and its NewtonÄHooke counterpart. The work is organized
as follows. In Sec. 1, the method of nonlinear realizations is applied to construct a dynamical
realization of the l-conformal Galilei algebra in terms of the second-order differential equa-
tions. Similar analysis for the l-conformal NewtonÄHooke algebra is accomplished in Sec. 2.
We confront the results obtained for the two algebras in the concluding Sec. 3.

1. DYNAMICAL REALIZATION OF l-CONFORMAL GALILEI ALGEBRA

The l-conformal Galilei algebra includes the generators of time translations, dilatations,
special conformal transformations, spatial rotations, spatial translations, Galilei boosts and

accelerations. Denoting the generators by (H, D, K, Mij , C
(n)
i ), respectively, where i =

1, . . . , d is a spatial index and n = 0, 1, . . . , 2l, one has the structure relations [33]:

[H, D] = iH, [H, C
(n)
i ] = inC

(n−1)
i ,

[H, K] = 2iD, [D, K] = iK,

[D, C
(n)
i ] = i(n − l)C(n)

i , [K, C
(n)
i ] = i(n − 2l)C(n+1)

i , (1)

[Mij , C
(n)
k ] = −i(δikC

(n)
j − δjkC

(n)
i ),

[Mij , Mkl] = −i(δikMjl + δjlMik − δilMjk − δjkMil).

Note, that (H, D, K) form so(2, 1) subalgebra, which is the conformal algebra in one dimen-

sion. The instances of n = 0 and n = 1 in C
(n)
i correspond to the spatial translations and

Galilei boosts. Higher values of n are linked to accelerations.
In order to construct a dynamical realization of this algebra, let us apply the method of

nonlinear realizations along the lines proposed in [19]. As the ˇrst step, one considers the
coset space 1

G̃ = eitHeizKeiuDeix
(n)
i C

(n)
i (2)

parameterized by the coordinates (t, z, u, x
(n)
i ). Left multiplication by a group element g =

eiaHeibKeicDeiλ
(n)
i C

(n)
i e

i
2ωijMij determines the action of the group on the coset space. Then,

one considers the subgroup G = eitHeizKeiuDeix
(n)
i C

(n)
i and constructs the left-invariant

MaurerÄCartan one-forms

G−1dG = i(ωHH + ωKK + ωDD + ω
(n)
i C

(n)
i ), (3)

where

ωH = e−udt, ωK = eu(z2dt + dz), ωD = du − 2z dt,

ω
(n)
i = dx

(n)
i − (n − l)x(n)

i ωD − (n + 1)x(n+1)
i ωH − (n − 2l − 1)x(n−1)

i ωK .
(4)

1As usual, summation over repeated indices is understood.



1352 Galajinsky A., Masterov I.

In the last line it is assumed that x
(−1)
i = x

(2l+1)
i = 0. Finally, let us impose the constraints

on the MaurerÄCartan one-forms

ωD = 0, γ−1ωK − γωH = 0, ω
(n)
i = 0, (5)

where γ is an arbitrary (coupling) constant. Taking t to be the temporal coordinate and
introducing the new variable ρ = e

u
2 , one can get rid of the variable z via z = ρ̇/ρ, while the

equations which govern the dynamics read

ρ̈ =
γ2

ρ3
, ρ2ẋ

(n)
i = (n + 1)x(n+1)

i − (2l − n + 1)γ2x
(n−1)
i . (6)

Note, that ρ describes the conformal particle in one dimension [35] and the ˇrst two constraints
in (5) coincide with those in [36].

Let us rewrite the rightmost equation in (6) in the matrix form

ρ2 d

dt
x(n) = x(m)Amn, (7)

where x(n) = (x(0), . . . , x(2l)). For the discussion to follow, the spatial index i carried by
x(n) is inessential and will be omitted. For integer l the matrix Amn is degenerate and has
the following eigenvalues:

(0,±2iγ,±4iγ,±6iγ, . . . ,±2liγ). (8)

As Amn is real, all the eigenvectors occur in complex conjugate pairs, but for the eigenvector
corresponding to the zero eigenvalue, which is real. Let us denote the eigenvectors by v0

(n),

v1
(n), v̄1

(n), . . . , vl
(n), v̄l

(n), where the superscript refers to the number of the corresponding
eigenvalue, the bar stands for complex conjugate, and n = 0, . . . , 2l. In particular, in this
notation, v1

(n) is related to the eigenvalue 2iγ, while v̄1
(n) is linked to −2iγ. As usual, the

eigenvectors are deˇned up to a factor.
Contracting the master equations (7) with the eigenvectors of Amn, one gets

ρ2 d

dt

[
x(n)v0

(n)

]
= 0,

ρ2 d

dt

[
x(n)(vp

(n) + v̄p
(n))

]
= 2pγ

[
ix(n)(vp

(n) − v̄p
(n))

]
,

ρ2 d

dt

[
ix(n)(vp

(n) − v̄p
(n))

]
= −2pγ

[
x(n)(vp

(n) + v̄p
(n))

]
,

(9)

where p = 1, . . . , l. Thus, it is natural to introduce the new ˇelds

x(n)v0
(n), x(n)(vp

(n) + v̄p
(n)), ix(n)(vp

(n) − v̄p
(n)). (10)

As x(n)v0
(n) obeys the ˇrst-order equation, on physical grounds it seems reasonable to discard

it. The second line in (9) allows one to express ix(n)(vp
(n) − v̄p

(n)) via x(n)(vp
(n) + v̄p

(n)). The
latter deˇne a set of dynamical ˇelds

χp
i = x

(n)
i (vp

(n) + v̄p
(n)), (11)



Dynamical Realizations of Nonrelativistic Conformal Groups 1353

where p = 1, . . . , l and i = 1, . . . , d, which obey the equations of motion

ρ2 d

dt

(
ρ2 d

dt
χp

i

)
+ (2γp)2χp

i = 0. (12)

It is to be remembered that (12) should be solved jointly with ρ̈ = γ2/ρ3.
Note that, given l, (12) contains a chain of oscillator-like equations with growing fre-

quency. In particular, the value (2γ)2 appears for any l, the equation involving (4γ)2 is
common for all l > 1, the frequency (6γ)2 is shared by all l > 2, etc. The reason why one
can realize different l-conformal Galilei groups in one and the same equation is that all the

vector generators C
(n)
i with n > 1 prove to be functionally dependent on C

(0)
i and C

(1)
i . To

put it in other words, although C
(n)
i with n > 1 are involved in the formal algebraic structure

behind the equations of motion (12), they prove to be irrelevant for an actual solving thereof
(see also [37]).

Now let us turn to a half-integer l. In this case, the matrix Amn is nondegenerate and its
eigenvalues read

(±iγ,±3iγ,±5iγ, . . . ,±2liγ). (13)

As before, the eigenvectors of Amn occur in complex conjugate pairs vp
(n), v̄p

(n), where p =

1, 3, 5, . . . , 2l, which prompt one to introduce the new dynamical ˇelds χp
i = x

(n)
i (vp

(n)+ v̄p
(n))

and bring (7) to a set of decoupled generalized oscillators

ρ2 d

dt

(
ρ2 d

dt
χp

i

)
+ (γp)2χp

i = 0, (14)

which are accompanied by ρ̈ = γ2/ρ3. Making use of the l-conformal Galilei symmetry, one
can readily solve the equations of motion by purely algebraic means

χp
i = αp

i cos (pγs(t))+ βp
i sin (pγs(t)), s(t) =

1
γ

arctan
(
D + tH

γ

)
,

ρ(t) =

√
(D + tH)2 + γ2

H ,

(15)

where D, H, αp
i and βp

i are constants of integration.

2. DYNAMICAL REALIZATION OF l-CONFORMAL NEWTONÄHOOKE ALGEBRA

The l-conformal NewtonÄHooke algebra involves the same set of generators as its Galilei
counterpart. As compared to (1), only the ˇrst line is modiˇed 1

[H, D] = i

(
H ∓ 2

R2
K

)
, [H, C

(n)
i ] = i

(
nC

(n−1)
i ± (n − 2l)

R2
C

(n+1)
i

)
. (16)

1As is known, the l-conformal NewtonÄHooke algebra and its Galilei counterpart are isomorphic (see, e.g., [21]).
It is to be remembered, however, that, as far as dynamical realizations are concerned, a linear change of basis, which
links up the algebras, implies a change of the Hamiltonian and alters the dynamics.
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Here, R is the dimensionful constant called the characteristic time. In (16) the upper/lower sign
corresponds to a negative/positive cosmological constant. Below we construct a dynamical
realization of the l-conformal NewtonÄHooke algebra in terms of the second-order differential
equations for the case of a negative cosmological constant.

Repeating the steps outlined in the preceding section, one constructs the MaurerÄCartan
one-forms

wH = e−udt, wD = du − 2z dt, wK = eu
(
dz + z2dt

)
+

2
R2

sinh u dt,

w
(n)
i = dx

(n)
i −(n + 1)x

(n+1)
i wH−(n−l)x

(n)
i wD−(n−2l−1)x

(n−1)
i

(
wK +

1
R2

wH

)
.

(17)

Imposing the constraints

wD = 0, γ̃−1wK − γ̃wH = 0, w
(n)
i = 0, (18)

where γ̃ is an arbitrary (coupling) constant, from the ˇrst two restrictions in (18) one removes
z and derives the equation of motion for the one-dimensional conformal mechanics in the
harmonic trap

ρ̈ =
γ2

ρ3
− ρ

R2
, (19)

where γ2 = γ̃2 + 1/R2. The last constraint in (18) yields the equation which coincides with
the rightmost equation in (6), but for γ2 = γ̃2 + 1/R2. Thus, the analysis in the preceding
section can be repeated for this case as well, which yields the general solution of the equations
of motion

χp
i = αp

i cos (pγs(t)) + βp
i sin (pγs(t)), s(t) =

1
γ

arctan
DK + (D2 + γ2)R tan

t

R
γK ,

ρ(t) =

√√√√√
(
DR sin

t

R
+ K cos

t

R

)2

+
(

γR sin
t

R

)2

K ,

(20)

where D, K, αp
i and βp

i are constants of integration.

3. DISCUSSION

Let us confront qualitative behaviors of particles described by (20) and (15). For deˇnite-
ness, in what follows we assume γ to be positive, choose p = 2 (l = 1), and stick to the case
of three spatial dimensions. Making use of the rotation invariance, one can choose a coordi-
nate system, in which the motion occurs in the xy-plane, with αi

1 in (15) being parallel to the

1Here and in what follows, we omit the superscript p = 2 attached to αi and χi.
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x-axis. The orbit is an ellipse with one point corresponding to the polar angle φ = 2γs = π
removed. One can verify that, being initially at rest close to χi = −αi (as t → −∞), the

particle starts moving towards χi = αi with growing angular velocity
dφ

dt
= 2γ

ds

dt
=

2γ

ρ2(t)
.

Given the initial data D, H, it arrives there at t = −D/H, which corresponds to the polar
angle φ = 2γs = 0. Then, it continues to move towards χi = −αi with decreasing angular
velocity and freezes up as t → ∞.

For the case of the l-conformal NewtonÄHooke group the shape of the orbit is the same,

but a qualitative behavior is different. The range of the temporal coordinate is −πR

2
<

t <
πR

2
. As t → ±πR

2
, the angular velocity

dφ

dt
= 2γ

ds

dt
=

2γ

ρ2
tends to the constant

value

(
2γK

D2 + γ2

)
1

R2
, which is proportional to the cosmological constant. If D > 0, one

reveals three regimes, in which the angular velocity ˇrst increases, then decreases and then
increases again. Likewise, for D < 0 two phases of decelerated motion are separated by the
acceleration phase in the middle. In both cases, the three regimes are separated by two roots

of tan
2t

R
=

2DKR

K2 − (D2 + γ2)R2
. For D = 0 there are two regimes, in which acceleration

is followed by deceleration for γ2 − K2/R2 > 0, and vice versa for γ2 − K2/R2 < 0. If
D = 0 and K = γR, the motion is uniform. Note that, as the angular velocity is fully
determined by the conformal mode, the qualitative difference in the motion of a particle
along the orbit in the case of the l-conformal Galilei symmetry and its NewtonÄHooke
counterpart correlates with the dynamics of ρ(t). For the former case, the conformal mode
is scattered off the repulsive potential γ2/ρ2 and its motion is unbounded, while for the
latter case, it is conˇned to move in the potential well γ2/ρ2 + ρ2/R2. One can verify that
for p > 2 the qualitative picture is similar, but a particle makes more than one revolution
in the ellipse.
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