POMERON IN THE $\mathcal{N}=4$ SYM
 AT LARGE COUPLING CONSTANT

A. V. Kotikov ${ }^{a, 1}$, L. N. Lipatov ${ }^{b}$
${ }^{a}$ Joint Institute for Nuclear Research, Dubna
${ }^{b}$ Theoretical Physics Department, Petersburg Nuclear Physics Institute, Gatchina, Russia

We show the result for the BFKL Pomeron intercept at $\mathcal{N}=4$ SYM in the form of the inverse coupling expansion $j_{0}=2-2 \lambda^{-1 / 2}-\lambda^{-1}+1 / 4 \lambda^{-3 / 2}+2\left(1+3 \zeta_{3}\right) \lambda^{-2}+O\left(\lambda^{-5 / 2}\right)$, which has been calculated in [1] with the use of the AdS/CFT correspondence.

PACS: 11.30.pb; 12.10.-g; 12.15.-y

The investigation of the high-energy behavior of scattering amplitudes in the $\mathcal{N}=4$ Supersymmetric Yang-Mills (SYM) model [2,3] is important for our understanding of the Regge processes in QCD. Indeed, this conformal model can be considered as a simplified version of QCD, in which the next-to-leading order (NLO) corrections [4] to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [5] are comparatively simple and numerically small. On the other hand, due to the AdS/CFT correspondence [6,7], in $\mathcal{N}=4$ SYM some physical quantities can be also computed at large couplings.

With the use of the BFKL equation in a diffusion approximation [2], strong coupling results [8,9] for anomalous dimension (AD) γ of twist-2 Wilson operators and the Pomerongraviton duality [10], the Pomeron intercept was calculated at the leading order in the inverse coupling constant (see Erratum [11] to the paper [12]). Similar results were obtained also in [13].

Due to the symmetry of the BFKL equation to the substitution $\gamma_{\mathrm{BFKL}} \rightarrow 1-\gamma_{\mathrm{BFKL}}$, its r.h.s. is an even function of ν (j is spin and the number of derivations in the Wilson operators)

$$
\begin{equation*}
\omega=\omega_{0}+\sum_{m=1}^{\infty}(-1)^{m} D_{m} \nu^{2 m}, \quad \gamma_{\mathrm{BFKL}}=\frac{1}{2}+i \nu, \quad \omega=j-1 \tag{1}
\end{equation*}
$$

where ω_{0} and D_{m} are functions of the 't Hooft coupling constant λ with known first two coefficients, which are $\sim \lambda$ and $\sim \lambda^{2}$.

[^0]Due to the Möbius invariance and hermicity of the BFKL Hamiltonian in $\mathcal{N}=4$ SYM, expansion (1) is valid also at large coupling constants. In the framework of the AdS/CFT correspondence, the BFKL Pomeron is equivalent to the Reggeized graviton [10]. In particular, in the strong coupling regime $\lambda \rightarrow \infty$

$$
\begin{equation*}
j_{0}=2-\Delta \tag{2}
\end{equation*}
$$

where the leading contribution $\Delta=2 / \sqrt{\lambda}$ was calculated in [11,13]. Below we present the following several terms in the strong coupling expansion of the Pomeron intercept.

Due to the energy-momentum conservation, the universal AD of the stress tensor $T_{\mu \nu}$ should be zero, i.e.,

$$
\begin{equation*}
\gamma(j=2)=0 \tag{3}
\end{equation*}
$$

It is important, that the $\mathrm{AD} \gamma$ does not coincide with γ_{BFKL} appearing in the BFKL equation. They are related as follows [4, 18]:

$$
\begin{equation*}
\gamma=\gamma_{\mathrm{BFKL}}+\frac{\omega}{2}=\frac{j}{2}+i \nu \tag{4}
\end{equation*}
$$

where the additional contribution $\omega / 2$ is responsible, in particular, for the cancellation of the singular terms $\sim 1 / \gamma^{3}$ obtained from the NLO corrections to the eigenvalue of the BFKL kernel $[4,18]$. Using the above relations, one obtains $\nu(j=2)=i$. As a result, from Eq. (1) for the Pomeron trajectory we derive the following representation for the correction Δ to the spin-2 graviton:

$$
\begin{equation*}
\Delta=\sum_{m=1}^{\infty} D_{m} \tag{5}
\end{equation*}
$$

According to (2) and (5), we have the following small- ν expansion for the eigenvalue of the BFKL kernel:

$$
\begin{equation*}
j-2=\sum_{m=1}^{\infty} D_{m}\left(\left(-\nu^{2}\right)^{m}-1\right) \tag{6}
\end{equation*}
$$

where ν^{2} is related to γ according to Eq. (4)

$$
\begin{equation*}
\nu^{2}=-\left(\frac{j}{2}-\gamma\right)^{2} \tag{7}
\end{equation*}
$$

On the other hand, due to the AdS/CFT correspondence, the string energies E in dimensionless units are related to the $\mathrm{AD} \gamma$ of the twist-two operators as follows [7]:

$$
\begin{equation*}
E^{2}=(j+\Gamma)^{2}-4, \quad \Gamma=-2 \gamma \tag{8}
\end{equation*}
$$

and therefore we can obtain from (7) the relation between the parameter ν for the principal series of unitary representations of the Möbius group and the string energy $E: \nu^{2}=$ $=-\left(E^{2} / 4+1\right)$. This expression for ν^{2} can be inserted in the r.h.s. of Eq. (6) leading to the following expression for the Regge trajectory of the graviton in the anti-de Sitter space:

$$
\begin{equation*}
j-2=\sum_{m=1}^{\infty} D_{m}\left[\left(\frac{E^{2}}{4}+1\right)^{m}-1\right] . \tag{9}
\end{equation*}
$$

We assume, that Eq. (9) is valid also at large j and large λ in the region $1 \ll j \ll \sqrt{\lambda}$, where the strong coupling calculations of energies were performed [14,15]. These energies can be presented in the form ${ }^{1}$

$$
\begin{equation*}
\frac{E^{2}}{4}=\sqrt{\lambda} \frac{S}{2}\left[h_{0}(\lambda)+h_{1}(\lambda) \frac{S}{\sqrt{\lambda}}+h_{2}(\lambda) \frac{S^{2}}{\lambda}\right]+O\left(S^{7 / 2}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{i}(\lambda)=a_{i 0}+\frac{a_{i 1}}{\sqrt{\lambda}}+\frac{a_{i 2}}{\lambda}+\frac{a_{i 3}}{\sqrt{\lambda^{3}}}+\frac{a_{i 2}}{\lambda^{2}} . \tag{11}
\end{equation*}
$$

The contribution $\sim \sqrt{S}$ can be extracted directly from the Basso result [16] taking $J_{\text {an }}=2$ according to [17]:

$$
\begin{equation*}
a_{00}=1, \quad a_{01}=-\frac{1}{2}, \quad a_{02}=a_{03}=\frac{15}{8}, \quad a_{04}=\frac{135}{128} . \tag{12}
\end{equation*}
$$

The coefficients a_{10} and a_{20} come from considerations of the classical part of the spinning folded string corresponding to the twist-2 operators (see, for example, [15])

$$
\begin{equation*}
a_{10}=\frac{3}{4}, \quad a_{20}=-\frac{3}{16} . \tag{13}
\end{equation*}
$$

The one-loop coefficient a_{11} is found recently in the paper [17], considering different asymptotical regimes with taking into account the Basso result [16] (ζ_{3} is the Euler ζ-function)

$$
\begin{equation*}
a_{11}=\frac{3}{16}\left(1-\zeta_{3}\right) . \tag{14}
\end{equation*}
$$

Comparing the l.h.s. and r.h.s. of (9) at large j values gives us the coefficients D_{m} and Δ. So, at $\lambda \rightarrow \infty$, the correction Δ for the Pomeron intercept $j_{0}=2-\Delta$ has the form

$$
\begin{align*}
& \Delta=\frac{2}{\lambda^{1 / 2}}\left[1+\frac{1}{2 \lambda^{1 / 2}}-\frac{1}{8 \lambda}-\left(1+3 \zeta_{3}\right) \frac{1}{\lambda^{3 / 2}}+\right. \\
&\left.+\left(2 a_{12}-\frac{145}{128}-\frac{9}{2} \zeta_{3}\right) \frac{1}{\lambda^{2}}+O\left(\frac{1}{\lambda^{5 / 2}}\right)\right] \tag{15}
\end{align*}
$$

The fourth corrections in (15) contain unknown coefficient a_{12}, which will be obtained after the evaluation of the spinning folded string on the two-loop level. Some estimations were given in Sec. 6 of [1].
A. V. K. was supported in part by RFBR grant No. 13-02-01060-a. He thanks the Organizing Committee of International Workshop "Supersymmetries and Quantum Symmetries" (SQS'2013) for invitation.

[^1]
REFERENCES

1. Kotikov A. V., Lipatov L. N. Pomeron in the $N=4$ Supersymmetric Gauge Model at Strong Couplings // Nucl. Phys. B. 2013. V. 874. P. 889; Pomeron in the $N=4$ SYM at Strong Couplings. Preprint arXiv:1401.0639 [hep-th]. 5 p .
2. Kotikov A. V., Lipatov L. N. NLO Corrections to the BFKL Equation in QCD and in Supersymmetric Gauge Theories // Nucl. Phys. B. 2000. V. 582. P. 19.
3. Kotikov A. V., Lipatov L. N. DGLAP and BFKL Equations in the $N=4$ Supersymmetric Gauge Theory // Nucl. Phys. B. 2003. V.661. P. 19; DGLAP and BFKL Evolution Equations in the $N=4$ Supersymmetric Gauge Theory. Preprint hep-ph/0112346. 22 p.
4. Fadin V. F., Lipatov L. N. BFKL Pomeron in the Next-to-Leading Approximation // Phys. Lett. B. 1998. V. 429. P. 127;

Camici G., Ciafaloni M. Energy scale(s) and Next-to-Leading BFKL Equation // Ibid. V. 430. P. 349.
5. Lipatov L. N. Reggeization of the Vector Meson and the Vacuum Singularity in Non-Abelian Gauge Theories // Sov. J. Nucl. Phys. 1976. V. 23. P. 338;
Fadin V. F., Kuraev E. A., Lipatov L. N. On the Pomeranchuk Singularity in Asymptotically Free Theories // Phys. Lett. B. 1975. V.60. P. 50; Multi-Reggeon Processes in the Yang-Mills Theory // Sov. Phys. JETP. 1976. V.44. P. 443; The Pomeranchuk Singularity in Non-Abelian Gauge Theories // Sov. Phys. JETP. 1977. V. 45. P. 199;
Balitsky I. I., Lipatov L. N. The Pomeranchuk Singularity in Quantum Chromodynamics // Sov. J. Nucl. Phys. 1978. V. 28. P. 822.
6. Maldacena J. The Large N Limit of Superconformal Field Theories and Supergravity // Adv. Theor. Math. Phys. 1998. V. 2. P. 231.
7. Gubser S. S., Klebanov I. R., Polyakov A. M. Gauge Theory Correlators from Noncritical String Theory // Phys. Lett. B. 1998. V.428. P. 105;
Witten E. Anti-de Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories // Adv. Theor. Math. Phys. 1998. V. 2. P. 253.
8. Gubser S. S., Klebanov I. R., Polyakov A. M. A Semiclassical Limit of the Gauge/String Correspondence // Nucl. Phys. B. 2002. V.636. P. 99.
9. Frolov S., Tseytlin A. A. Semiclassical Quantization of Rotating Superstring in $\operatorname{AdS}(5) \times S(5)$ // JHEP. 2002. V.0206. P. 007;
Roiban R., Tirziu A., Tseytlin A. A. Two-Loop World-Sheet Corrections in $A d S_{5} \times S^{5}$ Superstring // JHEP. 2007. V. 0707. P. 056.
10. Polchinski J., Strassler M. J. Hard Scattering and Gauge/String Duality // Phys. Rev. Lett. 2002. V. 88. P. 031601 ; Deep Inelastic Scattering and Gauge/String Duality // JHEP. 2003. V.0305. P. 012.
11. Kotikov A. V. et al. Three-Loop Universal Anomalous Dimension of the Wilson Operators in $N=4$ SUSY Yang-Mills Model // Phys. Lett. B. 2006. V.632. P. 754 (Erratum to Ref. [12]).
12. Kotikov A. V. et al. Three-Loop Universal Anomalous Dimension of the Wilson Operators in $N=4$ SUSY Yang-Mills Model // Phys. Lett. B. 2004. V. 595. P. 521.
13. Brower R. C. et al. The Pomeron and Gauge/String Duality // JHEP. 2007. V.0712. P. 005.
14. Gromov N. et al. Quantum Folded String and Integrability: From Finite Size Effects to Konishi Dimension // JHEP. 2011. V. 1108. P. 046.
15. Roiban R., Tseytlin A. A. Semiclassical String Computation of Strong-Coupling Corrections to Dimensions of Operators in Konishi Multiplet // Nucl. Phys. B. 2011. V.848. P. 251.
16. Basso B. An Exact Slope for AdS/CFT. Preprint arXiv:1109.3154 [hep-th]. 6 p.; Scaling Dimensions at Small Spin in $N=4$ SYM Theory. Preprint arXiv:1205.0054 [hep-th]. 25 p.
17. Gromov N., Valatka S. Deeper Look into Short Strings // JHEP. 2012. V. 1203. P. 058.
18. Salam G. P. An Introduction to Leading and Next-to-Leading BFKL // Acta Phys. Polon. B. 1999. V.30. P. 3679.

[^0]: ${ }^{1}$ E-mail: Kotikov@theor.jinr.ru

[^1]: ${ }^{1}$ Here, we put $S=j-2$, which, in particular, is related to the use of the angular momentum $J_{\mathrm{an}}=2$ in calculations of [14, 15].

