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NEW APPROACH TO N -EXTENDED CONFORMAL
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We brie	y review the novel off-shell formulation for N -extended conformal supergravity in three
space-time dimensions developed in [1]. Our approach is based on gauging the N -extended supercon-
formal algebra osp(N|4,R) in superspace. A special feature of the formulation is that the constraints
imposed imply that the covariant derivative algebra is given in terms of a single curvature superˇeld,
the super-Cotton tensor. We also elaborate on the component structure of the Weyl multiplet.

PACS: 04.65.+e

INTRODUCTION

Pure N -extended conformal supergravity in three dimensions (3D) is a supersymmetric
ChernÄSimons theory. It was originally engineered in the 1980s [2Ä4] (see also [5]) by
gauging the N -extended superconformal algebra osp(N|4, R) in ordinary space-time. The
resulting theory was off-shell only for N = 1 [2] and N = 2 [3], and on-shell for N > 2 [4,5].
We discuss this important point in more detail below.

According to [4], N -extended conformal supergravity is described by the set of gauge
ˇelds, which are in one-to-one correspondence with the generators of osp(N|4, R) and which
may naturally be split into three subsets. The ˇrst subset consists of the dynamical ˇelds:
the vielbein em

a, the N gravitino ψm
α
I and the SO(N ) gauge ˇeld Vm

IJ = −Vm
JI .

The second subset is given by the dilatation ˇeld bm, which is a pure gauge degree of
freedom (one may completely gauge away bm by using the local conformal boosts). The
third subset consists of the following composite ˇelds: the spin connection ωm

ab, the spe-
cial conformal connection fm

a and the S-supersymmetry connection φm
α
I . There are two

ways to make the latter ˇelds composite: either by imposing covariant constraints within
the second-order formalism or by enforcing certain equations of motion using the ˇrst-order
formalism.

1E-mail: sergei.kuzenko@uwa.edu.au
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The action for N -extended conformal supergravity given in [4] is

S =
1
4

∫
d3x e

{
εabc

(
ωa

fgRbcfg − 2
3
ωaf

gωbg
hωch

f−

− i

2
Ψbc

α
I (γd)α

β(γa)β
γεdefΨef

I
γ − 2

(
Rab

IJVcIJ +
2
3
Va

IJVbI
KVcKJ

) )}
. (1)

Here Rab
cd and Rab

IJ are the Lorentz and SO(N ) curvature tensors, and Ψab
γ
K Å the

gravitino ˇeld strength.
It is a simple exercise to count the number of off-shell degrees of freedom which are

contained in the dynamical ˇelds, the bosonic em
a and Vm

IJ and the fermionic ψm
α
I ones.

The result is N (N −1)+2 bosonic and 2N fermionic off-shell degrees of freedom. Thus, the
number of bosonic degrees of freedom matches that of the fermionic ones only in the cases
N = 1 and N = 2. Since the formulation of [4,5] is on-shell for N > 2, it is not suitable for
many interesting applications such as the construction of matter couplings. Auxiliary ˇelds
are required for N > 2.

1. THE WEYL MULTIPLET IN SO(N ) SUPERSPACE

In 1995, Howe et al. [6] proposed a curved superspace geometry with structure group
SL(2, R)× SO(N ), which is suitable to describe off-shell 3D N -extended conformal super-
gravity. Speciˇcally, the authors of [6] postulated the superspace constraints and determined
all components of the superspace torsion of dimension-1. They also identiˇed the N -extended
Weyl multiplet, that is the off-shell superconformal multiplet that contains all the independent
gauge ˇelds of osp(N|4, R). At the same time, crucial elements of the formalism (including
the explicit structure of super-Weyl transformations and the solution of the dimension-3/2
and dimension-2 Bianchi identities) did not appear in [6]. The geometry of N -extended
conformal supergravity has been fully developed in [7] and then applied to construct general
supergravity-matter couplings in the cases N � 4 (the simplest extended case N = 2 was
studied in more detail in [8]). Below we review the salient points of the formalism.

Since the structure group is SL(2, R)×SO(N ), the superspace geometry is described by
covariant derivatives of the form

DA = EA
M∂M − 1

2
ΩA

bcMbc −
1
2
ΦA

IJNIJ , ∂M =
∂

∂zM
, (2)

with local coordinates zM = (xm, θμ
I ) chosen to parameterize the curved superspace M3|2N .

Here EA = EA
M∂M is the supervielbein; Mab and ΩA

bc are the Lorentz generators and
connection, respectively; and NIJ and ΦA

IJ are respectively the SO(N ) generators and
connection. The covariant derivatives obey (anti)commutation relations of the form

[DA,DB} = −TAB
CDC − 1

2
RAB

cdMcd −
1
2
RAB

IJNIJ , (3)

where TAB
C is the torsion, RAB

cd is the Lorentz curvature and RAB
IJ is the SO(N )

curvature.
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The torsion is subject to the conventional constraints [6]:

T I
α

J
β

c = −2iδIJ(γc)αβ , T I
α

J
β

γ
K = T I

αb
c = Tab

c = εβγTa
[J
β

K]
γ = 0. (4)

For N > 1, the complete solution to the constraints (4), derived in [7], is given in terms of
three dimension-1 tensor superˇelds W IJKL = W [IJKL], SIJ = S(IJ) and Ca

IJ = Ca
[IJ],

which appear in the anticommutator

{DI
α,DJ

β} = 2iδIJ(γc)αβDc − 2iεαβCγδIJMγδ − 4iSIJMαβ +

+
(
iεαβW IJKL − 4iεαβSK[IδJ]L + iCαβ

KLδIJ − 4iCαβ
K(IδJ)L

)
NKL. (5)

The tensor W IJKL is absent for N < 4. The Bianchi identities imply constraints on the
curvature superˇelds W IJKL, SIJ and Ca

IJ that are given in [7]. We refer to the superspace
geometry described above as SO(N ) superspace.

Although the N = 1 case is not described by (5), it can be obtained from the N > 1
algebra by performing a certain limit [7]. The algebra of N = 1 covariant derivatives [9] is

{Dα,Dβ} = 2iDαβ − 4iSMαβ, (6a)

[Da,Dβ ] = S(γa)β
γDγ − (γa)β

γCγδρMδρ − 2
3

(ηabDβS + 2εabc(γc)βγDγS)Mb. (6b)

Unlike the space-time approaches that gauge the entire superconformal algebra [2Ä5],
the structure group of SO(N ) superspace is a subgroup of osp(N|4, R). In particular, the
dilatation symmetry and S-supersymmetry are not gauged in this approach. The reason why
SO(N ) superspace is suitable to describe conformal supergravity is that the constraints (4)
are invariant under arbitrary super-Weyl transformations of the form [7]:

δσDI
α =

1
2
σDI

α + (DβIσ)Mαβ + (DαJσ)N IJ , (7a)

δσDa = σDa +
i

2
(γa)γδ(DK

γ σ)DδK + εabc(Dbσ)M c +
i

16
(γa)γδ([DK

γ ,DL
δ ]σ)NKL, (7b)

where the parameter σ is a real unconstrained superˇeld. Under (7), W IJKL transforms
homogeneously, while the transformations of SIJ and Ca

IJ are inhomogeneous [7],

δσW IJKL = σW IJKL, (7c)

δσSIJ = σSIJ − i

8
[Dγ(I ,DJ)

γ ]σ, (7d)

δσCa
IJ = σCa

IJ − i

8
(γa)γδ[D[I

γ ,DJ]
δ ]σ. (7e)

The superˇeld W IJKL is called the super-Cotton tensor, since it transforms as a primary ˇeld
under the super-Weyl group and contains the ordinary Cotton tensor among its component
ˇelds. In the cases N < 4, the superˇeld W IJKL vanishes and instead the super-Cotton
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tensor is constructed from the curvature superˇelds as follows [1,10,11]:

N = 1 : Wαβγ = −iDδDδCαβγ − 2D(αβDγ)S − 8SCαβγ , (8a)

N = 2 : Wαβ =
i

8
[Dγ

I ,DI
γ ]Cαβ − i

4
εIJ [DI

(α,DJ
β)]S + 2SCαβ , (8b)

N = 3 : Wα =
i

12
εIJKDβICαβ

JK , (8c)

where for N = 2 we have deˇned Cαβ := (1/2) εIJCαβ
IJ and S := (1/2) δIJSIJ . The sym-

metric spinors (8a)Ä(8c) transform homogeneously under the super-Weyl transformations (7).
The ordinary Weyl and local S-supersymmetry transformations are generated by the lowest

components of σ:
σ|θ=0, DI

ασ|θ=0. (9)

The appearance of super-Weyl transformations is a common feature of conventional ap-
proaches to conformal supergravity in diverse dimensions.

The SO(N ) superspace has proven powerful for the construction of general supergravity-
matter couplings in the cases N � 4 [7, 8]. However, the problem of constructing off-shell
conformal supergravity actions was not considered in these papers. As follows from the
analyses in [1, 10], SO(N ) superspace is not an optimum setting to address this problem.

2. THE WEYL MULTIPLET IN CONFORMAL SUPERSPACE

In this section, we present the new off-shell formulation for N -extended conformal su-
pergravity developed in [1] and elaborate on the component structure (see also [14]). It is
a generalization of the off-shell formulations for N = 1 and N = 2 conformal supergravity
theories in four dimensions [12,13].

2.1. The Geometry of Conformal Superspace. The 3D N -extended superconformal al-
gebra, osp(N|4, R), contains the super-Poincar
e translation PA = (Pa, QI

α), special (su-
per)conformal generators 1 KA = (Ka, SI

α), Lorentz (Mab), dilatation (D) and SO(N ) or
R-symmetry (NKL) generators. Their (anti)commutation relations are given explicitly in [1].
The covariant derivatives are chosen to have the form

∇A = EA − ωA
bXb = EA − 1

2
ΩA

bcMbc −
1
2
ΦA

JKNJK − BAD − FA
BKB. (10)

The action of the generators Xa = (Mab, NIJ , D, KA) on the covariant derivatives,

[Xa,∇B} = −faB
C∇C − faB

cXc, (11)

resembles that with PA in the superconformal algebra

[Xa, PB} = −faB
CPC − faB

cXc. (12)

1In line with usual nomenclature we may refer to SI
α as the S-supersymmetry generator.
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The supergravity gauge group G is generated by local transformations of the form

δG∇A = [K,∇A], K = ξB∇B +
1
2
ΛbcMbc +

1
2
ΛJKNJK + σD + ΛBKB. (13)

Such a gauge transformation is a combination of: (i) a covariant general coordinate transfor-
mation associated with ξB ; and (ii) a standard superconformal transformation associated with
Λb = (Λbc, ΛJK , σ, ΛB). The covariant derivatives satisfy the (anti)commutation relations

[∇A,∇B} = −TAB
C∇C − 1

2
R(M)AB

cdMcd −
1
2
R(N)AB

PQNPQ−

− R(D)ABD − R(S)AB
γ
KSK

γ − R(K)AB
cKc, (14)

where TAB
C is the torsion and R(X)AB

c is the curvature associated with Xc.
The above geometry is too general and one needs to impose constraints. The con-

straints chosen are based on two principles: (i) the entire covariant derivative algebra should
be expressed in terms of a single primary superˇeld, the N -extended super-Cotton tensor;
and (ii) the superspace geometry should resemble the one describing the YangÄMills super-
multiplet.

As discussed above, the super-Cotton tensor possesses a different index structure for
different values of N . For N > 3 it corresponds to the SO(N ) superspace curvature
W IJKL. It is in this case that we take

{∇I
α,∇J

β} = 2iδIJ∇αβ + 2iεαβW IJ (15)

and require the operator W IJ to be of dimension-1 and conformally primary,

[D, W IJ ] = W IJ , [SI
α, W JK ] = 0. (16)

The most general ansatz for W IJ is

W IJ =
1
2
W IJKLNKL + A(∇α

KW IJKL)SαL + Bi(γc)αβ(∇αK∇βLW IJKL)Kc, (17)

with A and B some constants that turn out to be uniquely determined by (16). The resulting
algebra of covariant derivatives for N > 3 is

{∇I
α,∇J

β} = 2iδIJ∇αβ + iεαβW IJKLNKL − i

N − 3
εαβ(∇γ

KW IJKL)SγL+

+
1

2(N − 2)(N − 3)
εαβ(γc)γδ(∇γK∇δLW IJKL)Kc, (18a)

[∇a,∇J
β ] =

1
2(N − 3)

(γa)βγ

(
(∇γ

KW JPQK)NPQ − 1
(N − 3)

(∇γ
L∇δ

P W JKLP )SδK−

− i

2(N − 1)(N − 2)
(γa)βγ(γc)δρ(∇γ

K∇δ
L∇

ρ
P W JKLP )Kc

)
, (18b)
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[∇a,∇b] =
1

8N (N − 1)(N − 2)(N − 3)
×

× εabc(γc)αβ

(
2iN (N − 1)(∇α

I ∇
β
JWPQIJ)NPQ + 2iN (∇α

I ∇
β
J∇

γ
KWLIJK)SγL+

+ (γd)γδ(∇α
I ∇

β
J∇

γ
K∇δ

LW IJKL)Kd

)
, (18c)

where W IJKL satisˇes the Bianchi identity

∇I
αW JKLP = ∇[I

α W JKLP ] − 4
N − 3

∇αQWQ[JKLδP ]I . (19)

In the N = 4 case, W IJKL = εIJKLW and Eq. (19) is identically satisˇed. For N = 4 we
instead have the Bianchi identity

∇αI∇J
αW =

1
4
δIJ∇α

P∇P
α W. (20)

Although we considered only the N > 3 case, its algebra of covariant derivatives contains
information about the lower N cases. This is discussed in detail in [1]. The important point
is that in each case the algebra is expressed completely in terms of the super-Cotton tensor.

2.2. Degauging to SO(N ) Superspace. Under a KA transformation, the dilatation gauge
ˇeld B = EABA = EaBa + Eα

I BI
α transforms as

δK(Λ)B = −2EaΛa + 2Eα
I ΛI

α, (21)

which permits the gauge choice BA = 0. This removes the dilatation connection from all the
covariant derivatives. Once the KA symmetry has been ˇxed, it is natural to introduce the
degauged covariant derivatives

D̃A := ∇A + FA
BKB, (22)

whose structure group corresponds to SL(2, R) × SO(N ). The vanishing of all components
of the dilatation curvature imposes constraints on the components of FA

B . The solution of
these constraints is

FI
α

J
β = −FJ

β
I
α = iCαβ

IJ − iεαβSIJ , (23a)

Fαβ,
K
γ = −FK

γ ,αβ = Cαβγ
K +

2
3
εγ(α

(N − 1
N Sβ)

J +
N

N + 2
D̃J

β)S
)
, (23b)

Fab = − i

4N (γ(a)αβ(γb))γδD̃αICβγδ
I−

− i(N − 1)
6N 2

ηabD̃α
I Sα

I − i

6(N + 2)
ηabD̃α

I D̃I
αS−

− 1
2N (γa)αβ(γb)γδCαγ

IJCβδIJ +
1
N ηabSIJSIJ + ηabS2, (23c)

where

SIJ = SIJ + δIJS , S =
1
N δIJSIJ . (24)



1368 Butter D. et al.

The superˇelds Cαβ
IJ , SIJ , Cαβγ

K , Sα
I and S appear in the torsion and curvature tensors

corresponding to the degauged covariant derivatives. To see this, it sufˇces to evaluate the
action of [D̃A, D̃B} on an arbitrary conformal primary superˇeld. In particular, one ˇnds

{D̃I
α, D̃J

β} = 2iδIJ(γc)αβD̃c − 2iεαβCγδIJMγδ − 4iSIJMαβ +

+
(
iεαβW IJKL − 4iεαβSK[IδJ]L − 4iCαβ

K(IδJ)L
)
NKL. (25)

In fact, if we introduce a new vector covariant derivative deˇned by

Da = D̃a − 1
2
Ca

IJNIJ , (26)

the algebra of the covariant derivatives DA = (Da, D̃I
α) exactly coincides with that of SO(N )

superspace. The reason for having to introduce the new covariant derivatives DA can be

attributed to the appearance of the nonzero torsion component εβγT̃a
[J
β

K]
γ = −2Ca

JK in the

algebra corresponding to D̃A. Although this torsion component appears more complex than
that of SO(N ) superspace, Eq. (4), it leads to a simpler covariant derivative algebra.

We conclude that the N -extended conformal superspace describes the Weyl multiplet.
2.3. The Weyl Multiplet. The 3D N -extended Weyl multiplet can be extracted from

conformal superspace via component projections. It involves a set of gauge one-forms: the
vielbein em

a, the gravitino ψm
α
I , the SO(N ) gauge ˇeld Vm

IJ and the dilatation gauge
ˇeld bm. They appear in the superspace formulation as the lowest components of their
corresponding super one-forms,

em
a := Em

a|, ψm
α
I := 2Em

α
I |, Vm

IJ := Φm
IJ |, bm := Bm|, (27)

where the bar-projection [9] of a superˇeld V (z) = V (x, θ) is deˇned by the standard rule
V | := V (x, θ)|θ=0. The remaining connection ˇelds are composite and their expressions in
terms of the other ˇelds are given in [14]. By adopting a WessÄZumino gauge it is possible
to see that the remaining physical ˇelds are contained in the super-Cotton tensor.

Since one can deduce the lower N cases from the N > 3 case, we focus on the N > 3
case. For N > 3 the additional ˇelds are encoded in the super-Cotton tensor W IJKL [6] (see
also [15,16]). The component ˇelds are deˇned as

wIJKL := WIJKL|, (28a)

wα
IJK := − i

2(N − 3)
∇αLW IJKL|, (28b)

wαβ
IJ :=

i

2(N − 2)(N − 3)
∇(αK∇β)LW IJKL|, (28c)

wαβγ
I :=

i

(N − 1)(N − 2)(N − 3)
∇(αJ∇βK∇γ)LW IJKL|, (28d)

wαβγδ := − 1
N (N − 1)(N − 2)(N − 3)

∇(αI∇βJ∇γK∇δ)LW IJKL|, (28e)

yIJKL :=
i

N − 3
∇γ[I∇γP W JKL]P |, (28f)

Xα1···αn

I1···In+4 := I(n)∇[I1
(α1

· · · ∇In

αn)W
In+1···In+4]|. (28g)
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The factor I(n), which is needed to ensure the ˇelds Xα1···αn
I1···In+4 are real, is deˇned to

be I(n) = i, when n = 1, 2 (mod 4) and I(n) = 1 with n = 3, 4 (mod 4). The ˇelds deˇned
in (28), when organized by dimension, diagrammatically form the following tower [15,16]:

wI1···I4

�
��

�
��

Xα
I1···I5 wα

I1I2I3

�
��

�
��

�
��

�
��

Xα1α2
I1···I6 yI1···I4 wα1α2

I1I2

�
��

�
��

· · · wα1α2α3
I1

�
��

�
��

Xα1···αN−4
I1···IN wα1···α4

The component ˇelds wαβ
IJ , wαβγ

I and wαβγδ are constrained by the geometry to be
composite [14].

Although we have only deˇned the component ˇelds coming from the Cotton tensor for
N > 3, the coefˇcients in Eq. (28) have been chosen to allow one to derive component results
for lower N from the higher ones. We simply switch off the components with more than N
SO(N ) indices (independently) and deˇne

εI1···IN wα1···α4−N := wα1···α4−N
I1···IN . (29)

For N < 5 the component ˇelds deˇned by Eq. (28g) are identically zero. The N = 1
components of the super-Cotton tensor are

wαβγ := Wαβγ |, wαβγδ := i∇(αWβγδ)|, (30)

while for N = 2 they are deˇned by

wαβ := Wαβ |, wαβγ
I := 2εIJ∇(αJWβγ)|, wαβγδ := iεIJ∇I

(α∇J
βWγδ)|, (31)

which are all composite. The N = 3 component ˇelds of the super-Cotton tensor are

wα := Wα|, wαβ
IJ := −εIJK∇(αKWβ)|, wαβγ

I := −εIJK∇(αJ∇βKWγ)|, (32a)

wαβγδ := − i

3
εIJK∇I

(α∇J
β∇K

γ Wδ)|, (32b)

where the only auxiliary ˇeld is wα, and all other components are composite.
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