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QUANTIZATION
OF UNIVERSAL TEICHMéULLER SPACE

A. Sergeev 1

Steklov Mathematical Institute, Moscow

Universal Teichméuller space T is the quotient of the group QS(S1) of quasi-symmetric homeomor-
phisms of S1 modulo Méobius transformations. The quantization problem for T arises in the theory of
nonsmooth closed bosonic strings. Because of nonsmoothness of strings, the natural QS(S1)-action on
T is also not smooth, so there is no classical Lie algebra, associated to QS(S1). However, using the
methods of noncommutative geometry, we can deˇne a quantum Lie algebra of observables Derq(QS),
yielding the quantization of T .

PACS: 11.25.-w

The universal Teichméuller space T is the quotient of the group QS(S1) of quasi-symmetric
homeomorphisms of the unit circle S1 (i.e., homeomorphisms of S1, extending to quasi-
conformal homeomorphisms of the unit disc) modulo Méobius transformations. In particular,
this space contains the quotient S of the group Diff+(S1) of diffeomorphisms of S1, preserv-
ing orientation, modulo Méobius transformations. Both groups act naturally on the Sobolev

space V := H
1/2
0 (S1, R) of half-differentiable functions on the circle by reparameterization.

The spaces T and S arise in the closed bosonic string theory as the phase spaces of this
theory. The main difference between them is that in the case of S, we restrict to smooth
strings with the reparameterization group Diff+(S1), while in the case of T we consider the
maximal possible phase space, consisting of half-differentiable strings. In this case the role
of the reparameterization group is played by QS(S1).

Accordingly, in the case of S, the algebra of classical observables coincides with the Lie

algebra Vect(S1) of the group Diff+(S1). For the quantization space in this case, we can take

any of the Fock spaces F (V C, J) over the complexiˇed Sobolev space V C = H
1/2
0 (S1, C),

associated with a complex structure J on V . The inˇnitesimal version of the projective
Diff+(S1)-action on the union of Fock spaces F (V C, J) over the space of HilbertÄSchmidt
complex structures J generates an irreducible representation of Vect(S1) in any of these Fock
spaces, yielding the quantization of S.

For the universal Teichméuller space T , the situation is more complicated since the QS(S1)-
action on T is not smooth. By this reason, we cannot associate with T any Lie algebra of
classical observables, associated with the group QS(S1). However, we can deˇne a Lie
algebra of quantum observables Derq(QS), generated by the quantum differentials, acting on
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F (V C, J). These differentials originate from the integral operators dqh on V with kernels,
given essentially by the ˇnite-difference derivatives of h ∈ QS(S1).

Brie	y on the content of the paper. In Sec. 1, we deˇne the universal Teichméuller space T
and describe its properties. The space S of diffeomorphisms of S1 may be considered as a
regular part of T .

Quasi-symmetric homeomorphisms of S1, acting on the Sobolev space V of half-differen-
tiable functions on S1 by reparameterization, generate linear bounded symplectic operators
on V . Respectively, diffeomorphisms of S1 are realized as HilbertÄSchmidt symplectic oper-
ators on V . This action of quasi-symmetric homeomorphisms of S1 on the Sobolev space V
yields a Grassmann realization of T and S in terms of the HilbertÄSchmidt Grassmannian.

In Sec. 2, we explain how to quantize the regular part S of T , using the embedding of S
into the HilbertÄSchmidt Grassmannian. According to the ShaleÄBerezin theorem, there exists
a holomorphic Fock bundle over the space of HilbertÄSchmidt complex structures which can
be provided with a projective action of the HilbertÄSchmidt symplectic group, covering the
natural action of this group on the base. The inˇnitesimal version of this action yields the
Dirac quantization of S.

However, this quantization method does not extend to the whole universal Teichméuller
space T because of the nonsmoothness of the QS(S1)-action on T . For the quantization
of T , considered in Sec. 3, we use another approach, based on the ideas of noncommutative
geometry of Connes. Namely, we introduce a quantized inˇnitesimal version of the QS(S1)-
action on T in terms of which the Connes quantization of T is deˇned. The last Section is
based on the author's paper [4].

1. UNIVERSAL TEICHMéULLER SPACE

1.1. Deˇnition. The universal Teichméuller space is deˇned in terms of quasi-symmetric
homeomorphisms. A homeomorphism f : S1 → S1, preserving the orientation, is called
quasi-symmetric if it extends to a quasi-conformal homeomorphism of the unit disc Δ.

We recall that a homeomorphism w : Δ → Δ with locally integrable derivatives is called
quasi-conformal if there exists a function μ ∈ L∞(Δ) with the norm ‖μ‖∞ =: k < 1 such
that the following Beltrami equation

wz̄ = μwz

holds almost everywhere in Δ. In this case μ is called the Beltrami differential.
For μ ≡ 0, the Beltrami equation converts into the CauchyÄRiemann equation so in this

case its solutions are given by conformal maps. We shall consider such solutions as trivial
ones and factorize them out in the sequel.

Recall that the differential dw(z) of a conformal map sends circles with center in z to
circles centered at w(z). If w is a smooth quasi-conformal map, then its differential sends
circles with center in z to the ellipses, centered at w(z), with the eccentricities being uniformly
bounded in z ∈ D by a constant K , related to the above constant k by the formula

K =
1 + k

1 − k
� 1.

Quasi-conformal maps w : Δ → Δ form a group, i.e., the composition of quasi-conformal
maps is again quasi-conformal as well as the inverse of a quasi-conformal map. It implies that



Quantization of Universal Teichméuller Space 1405

quasi-symmetric homeomorphisms of S1 also form a group with respect to the composition,
denoted by QS(S1).

Since any diffeomorphism of S1, preserving the orientation, can be extended to a diffeo-
morphism of the closed unit disc Δ, which is evidently quasi-conformal, the group Diff+(S1)
of orientation-preserving diffeomorphisms of S1 is contained in the group QS(S1). So we
have the following chain of embeddings:

Méob(S1) ⊂ Diff+(S1) ⊂ QS(S1) ⊂ Homeo+(S1),

where Méob(S1) is the group of fractional-linear automorphisms of the unit disc Δ, restricted
to S1, and Homeo+(S1) is the group of orientation-preserving homeomorphisms of S1.

Deˇnition 1. The universal Teichméuller space is the quotient

T = QS(S1)/Méob(S1).

It can be identiˇed with the space of normalized quasi-symmetric homeomorphisms of S1,
ˇxing the points ±1, i ∈ S1.

It is a complex Banach manifold (cf. [4, 5]) which contains, according to the above
remark, the space

S := Diff+(S1)/Méob(S1)

of normalized diffeomorphisms of S1.

1.2. Sobolev Space of Half-Differentiable Functions

Deˇnition 2. The Sobolev space of half-differentiable functions on the circle is the Hilbert
space

V = H
1/2
0 (S1, R),

consisting of functions f ∈ L2
0(S1, R) with Fourier decompositions

f(z) =
∑
k �=0

fkzk, z = eiθ,

with f̄k = f−k and ˇnite Sobolev norm

∑
k �=0

|k||fk|2 = 2
∑
k>0

k|fk|2 < ∞.

A symplectic structure ω on V can be deˇned by the formula

ω(ξ, η) = 2 Im
∑
k>0

kξkη̄k for ξ, η ∈ V.

We can also introduce a complex structure J0 on V , given by

J0ξ = −i
∑
k>0

ξkzk + i
∑
k<0

ξkzk for ξ ∈ V.
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The introduced structures ω and J0 are compatible with each other in the sense that they
generate together a Riemannian metric g0 on V , given by

g0(ξ, η) := ω(ξ, J0η) = 2 Re
∑
k>0

kξkη̄k for ξ, η ∈ V.

The complex structure J0, being extended to the complexiˇed Sobolev space

V C = H
1/2
0 (S1, C),

generates a polarization of V C, i.e., decomposition of

V C = W+ ⊕ W−

into the direct orthogonal sum of (∓i)-eigenspaces of the complex structure operator J0.
1.3. QS-Action on the Sobolev Space V . Associate with a homeomorphism h : S1 → S1,

preserving the orientation, the ®change-of-variable¯ operator Th, deˇned by

Thξ = ξ ◦ h − 1
2π

2π∫

0

ξ(h(θ)) dθ.

This operator is correctly deˇned on the Sobolev space V and has the following remarkable
properties.

Theorem 1 (NagÄSullivan theorem).
1. The operator Th : V → V if and only if h ∈ QS(S1).
2. For h ∈ QS(S1) the operator Th acts symplectically on V , i.e., it preserves the form ω.
3. The complex-linear extension of Th to V C preserves W± if and only if h ∈ Méob(S1).

In this case Th acts on W± as a unitary operator.

The NagÄSullivan theorem immediately implies that there is an embedding

T = QS(S1)/Méob(S1) −→ J (V ) := Sp(V )/U(W+),

where Sp(V ) is the symplectic group of V , and U(W+) is the unitary group of W+, embedded
diagonally into Sp(V ).

The space J (V ) on the right can be identiˇed with the space of complex structures
on V , compatible with symplectic form ω. Indeed, acting on the reference complex struc-
ture J0 by operators from the group Sp(V ), we shall obtain all complex structures on V ,
compatible with ω, and it remains to factor out the transforms which do not change the
complex structure J0. The group of such transforms coincides precisely with the diagonal
subgroup U(W+).

The restriction of the constructed embedding to the subspace S ⊂ T yields an embedding

S = Diff+(S1)/Méob(S1) −→ JHS(V ) := SpHS(V )/U(W+),

where the symplectic HilbertÄSchmidt group is deˇned as

SpHS(V ) = {A ∈ Sp(V ) : pr+ ◦ A ◦ pr− is a HilbertÄSchmidt operator},

and pr± denotes the orthogonal projection pr± : V C → W±.
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2. QUANTIZATION OF S

2.1. Dirac Quantization. Deˇne ˇrst the classical systems to be quantized. A classical
system is a pair (M,A), consisting of the phase space M and algebra of classical observ-
ables A. The phase space of the system is a symplectic manifold (M, ω), while the algebra of
observables A is a subalgebra of the Lie algebra C∞(M, R) of smooth real-valued functions
on M , provided with the Poisson bracket, determined by ω.

A standard way to produce the algebras of classical observables is to consider a Lie
subgroup Γ of symplectic diffeomorphisms of (M, ω) and take for A the Lie algebra
Lie(Γ), consisting of Hamiltonian vector ˇelds Xf , generated by functions (Hamiltonians)
f ∈ C∞(M, R). Such functions f form a Lie algebra of observables, associated with Γ.

The quantum system, corresponding to the classical system (M,A), is determined by
an irreducible linear representation r of the algebra A, associating with every observable f
from A a self-adjoint operator r(f), acting in a complex Hilbert space H , called the quanti-
zation space. It is required that this representation should map

r : {f, g} �−→ 1
i
[r(f), r(g)] =

1
i
(r(f)r(g) − r(g)r(f)) (1)

and satisfy the normalization condition: r(1) = I .
Sometimes it is more convenient to deal with the complexiˇed algebras of observables AC

(or, more generally, with complex Lie algebras, provided with an involution). The Dirac
quantization of such a system (M,AC) is given by an irreducible linear representation r of
the observables f ∈ AC by closed linear operators r(f) in H , satisfying, apart from (1) and
normalization condition, also the conjugation rule: r(f̄ ) = r(f)∗.

We are going to apply this deˇnition to the quantization of inˇnite-dimensional systems
in which both the phase space and the algebra of observables are inˇnite-dimensional. For
the inˇnite-dimensional algebras of observables it is more natural to look for the projective
representations. If we succeed in ˇnding such a representation of the algebra of observables A,
it will mean that we have quantized an extended system (M, Ã), where Ã is a suitable central
extension of A.

In our case the role of the classical system is played by the pair

(S,Vect(S1)),

where Vect(S1) is the Lie algebra of the Lie group Diff+(S1), coinciding with the Lie algebra
of smooth tangent vector ˇelds on S1.

To quantize this system, we ˇrst extend it to a larger classical system, using the embedding

S −→ JHS(V ) := SpHS(V )/U(W+),

constructed above.
The extended classical system is given by

(JHS(V ), spHS(V )),

where spHS(V ) is the Lie algebra of the HilbertÄSchmidt symplectic group SpHS(V ).
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2.2. Quantization of the Extended System. We have to introduce ˇrst the quantization
space for our extended classical system. It coincides with the Fock space of the Sobolev
space V which is deˇned as follows.

Fix a complex structure J ∈ J (V ), generating a decomposition

V C = W ⊕ W

into the direct sum of (∓i)-eigenspaces of operator J and provide V C with the associated
inner product

〈z, w〉J := ω(z, Jw).

Denote by S(W ) the algebra of symmetric polynomials in variables z ∈ W and provide it
with the inner product, generated by 〈·, ·〉J . On monomials of the same degree it is given by
the formula

〈z1 ⊗ . . . ⊗ zn, z′1 ⊗ . . . ⊗ z′n〉J :=
∑

(i1,...,in)

〈z1, z
′
i1〉J · · · 〈zn, z′in

〉J ,

where the summation is taken over all permutations {i1, . . . , in} of the set {1, . . . , n}. On
monomials of different degrees it is set to zero and extended to the whole algebra S(W ) by
linearity.

The Fock space
FJ = F (V C, J)

is the closure of the algebra S(W ) with respect to the norm, determined by the introduced
inner product.

If {wn}∞n=1 is an orthonormal base of the subspace W , then one can take for the ortho-
normal base of the Fock space FJ the system of homogeneous polynomials

PK(z) =
1√
K!

〈z, w1〉k1
J · · · 〈z, wn〉kn

J ,

where K runs through all ˇnite index sets K = (k1, . . . , kn, 0, . . .) and K! = k1! · · ·kn! .
We unify the different Fock spaces FJ with J ∈ JHS(V ) into the Fock bundle

F :=
⋃

J∈JHS(V )

FJ −→ JHS(V ) = SpHS(V )/U(W+).

Theorem 2 (ShaleÄBerezin theorem). The Fock bundle F → JHS(V ) is a holomorphic
Hermitian Hilbert bundle. There is a projective unitary action of the symplectic HilbertÄ
Schmidt group SpHS(V ) on this bundle, covering its natural action on the base JHS(V ) by
left translations.

The inˇnitesimal version of this action yields a projective representation of the Lie algebra
spHS(V ) in the Fock space F0 = F (V C, J0), i.e., the quantization of the extended classical
system (

JHS(V ), ˜spHS(V )
)

,
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where ˜spHS(V ) is a suitable central extension of the symplectic HilbertÄSchmidt Lie alge-
bra spHS(V ).

The restriction of this construction to the subspace S ⊂ JHS(V ) yields a holomorphic
Hermitian Hilbert bundle

FS =
⋃
J∈S

FJ −→ S = Diff+(S1)/Méob(S1)

together with a projective action of the diffeomorphism group Diff+(S1) on FS , covering its
action on the base S. The inˇnitesimal version of this action yields a projective representation
of the Lie algebra Vect(S1) in the Fock space F0, i.e., the quantization of the classical system

(S, vir),

where vir is the Virasoro algebra, i.e., an (essentially unique) central extension of the Lie
algebra Vect(S1).

3. QUANTIZATION OF T

We can try to quantize the universal Teichméuller space T in the same way as we did it
for S. Namely, we can consider the Fock bundle of all complex structures from J (V ) and
try to pull back the Sp(V )-action on J (V ) to this Fock bundle. However, it is impossible,
according to the ShaleÄBerezin theorem. So we use another method of quantization of T ,
based on the noncommutative geometry of Connes.

In the following table we compare Connes and Dirac approaches to the quantization.

Dirac approach Connes approach

Classical
system

(M,A), where: M Å phase space,
A Å involutive Lie algebra of obser-
vables

(M,A), where: M Å phase space,
A Å involutive associative algebra of
observables with an exterior derivative d

Quantization

Irreducible representation
r : A → EndH , sending {f, g} �→
1

i
[r(f), r(g)]

Irreducible representation π : A →
EndH sending df �→ [S, π(f)], where
S = S∗, S2 = I is a symmetry operator

We can also reformulate the Connes deˇnition of quantization in terms of Lie algebras.
For that, introduce the Lie algebra DerA of derivations of A, i.e., linear maps of A, satisfying
the Leibniz rule. In these terms, the Connes quantization of (M, A) means an irreducible Lie
algebra representation of DerA in the Lie algebra End H of linear closed operators in H ,
provided with the commutator as a Lie bracket.

If all observables from the algebra A are smooth (as we have assumed before), both
deˇnitions of the quantization are essentially equivalent. Indeed, the differential df of a smooth
observable f is symplectically dual to the Hamiltonian vector ˇeld Xf , which establishes
the relation between the associative algebra of observables A � f and the Lie algebra of
observables A � Xf . The symmetry operator S is provided by the polarization H = H+⊕H−
of the quantization space H . It is related to the complex structure operator J , determined by
the same polarization, by the evident formula S = iJ .
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However, in the case when the algebra of classical observables contains nonsmooth func-
tions, the Dirac approach is formally nonapplicable. In the Connes approach, the differential df
of a nonsmooth observable f is also not deˇned but its quantum analogue

dqf := [S, π(f)]

can have sense.
Consider the following example in which the role of the algebra of observables is played by

A := L∞(S1, C).

Any f ∈ A determines the multiplication operator in the quantization space H := L2(S1, C)
by the formula

Mf : v ∈ H �−→ fv ∈ H.

The symmetry operator S in H is given by the Hilbert transform

(Sf)(ϕ) =
1
2π

P.V.

2π∫

0

K(ϕ, ψ) f(ψ) dψ,

where the integral is taken in the principal value sense and we identify f(ϕ) with f(eiϕ).
The kernel of the above integral operator is given by

K(ϕ, ψ) = 1 + i cot
ϕ − ψ

2
.

Note that for ϕ → ψ it behaves like 1 +
2i

ϕ − ψ
.

The differential df of a general observable f ∈ A is not deˇned but its quantum analogue

dqf = [S, Mf ]

is a correctly deˇned operator in H . Moreover, for f ∈ V it coincides with the HilbertÄ
Schmidt operator, given by

dqf(v)(ϕ) =
1
2π

2π∫

0

k(ϕ, ψ) v(ψ) dψ,

where
k(ϕ, ψ) = K(ϕ, ψ)(f(ϕ) − f(ψ)).

For ϕ → ψ, this kernel behaves like (up to a constant)

f(ϕ) − f(ψ)
ϕ − ψ

.

It can be shown that the quasi-classical limit of this operator, obtained by performing the
limit ϕ → ψ, coincides with the multiplication operator v �→ f ′v. So the quantization in this
case reduces to the replacement of the derivative by its ˇnite-difference analogue.
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Turning to the quantization of T , recall that we have deˇned earlier a natural action of the
group QS(S1) of quasi-symmetric homeomorphisms of the circle on the Sobolev space V .
But this action is not smooth, so it does not admit the differentiation. In particular, there is
no Lie algebra of classical observables, associated with T , and no associated classical system.
However, we shall construct directly a quantum algebra of observables, associated with T .

For that we deˇne ˇrst a quantized inˇnitesimal version of the QS(S1)-action on V , given
by the integral operator dqf . Next, we extend the operator dqf : V → V to the Fock
space F0 = F (V C, J0) by deˇning it ˇrst on the basis polynomials PK(z) with the help
of Leibniz rule and then extending by the linearity and closure to an operator dqf on F0.
The operators dqf with f ∈ QS(S1) generate a Lie algebra Derq(QS) which should be
considered as a quantum algebra of observables, associated with T . It can be also treated as
the replacement of the (nonexisting) classical Lie algebra, associated with the group QS(S1).

Let us compare now the Connes quantization of T with the Dirac quantization of the
space JHS(V ) of HilbertÄSchmidt complex structures on the Sobolev space V .

The Dirac quantization of JHS(V ) involved the following steps:
(1) we started from the SpHS(V )-action on V ;
(2) using ShaleÄBerezin theorem, we extended this action to a projective unitary action

of SpHS(V ) on the Fock bundle;
(3) inˇnitesimal version of this action yielded a projective unitary representation of spHS(V )

in the Fock space F0.
In the case of the Connes quantization of T , we have proceeded as follows:
(1) we started from the QS(S1)-action on V ;
(2) since the step (2) in the Dirac quantization of JHS is impossible in the case of T by

ShaleÄBerezin theorem, we have deˇned instead the quantized inˇnitesimal action of QS(S1)
on V , given by quantum differentials dqf ;

(3) we extended the operators dqf : V → V to F0 and deˇned the quantum Lie algebra
Derq(QS), generated by operators dqf on F0 with f ∈ QS(S1).

So, the Connes quantization of the universal Teichméuller space T involves the following
two steps:

(1) ˇrst quantization: construction of the quantized inˇnitesimal QS(S1)-action on V ,
given by the quantum differentials dqf with f ∈ QS(S1).

(2) second quantization: extension of operators dqf : V → V to operators dqf : F0 → F0,
generating the quantum algebra of observables Derq(QS), associated with T .

The correspondence principle for the constructed Connes quantization of T means that
this quantization, being restricted to S, coincides with the Dirac quantization of S.
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