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We apply the method of reduction of couplings in a Finite Uniˇed Theory and in the MSSM.
The method consists in searching for renormalization group invariant relations among couplings of
a renormalizable theory holding to all orders in perturbation theory. In both cases, we predict the
masses of the top and bottom quarks and the light Higgs in remarkable agreement with the experiment.
Moreover, we predict the masses of the other Higgses too, as well as the supersymmetric spectrum, the
latter being in very comfortable agreement with the LHC bounds on supersymmetric particles.
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INTRODUCTION

The main goal expected from a uniˇed description of interactions is to understand the
large number of free parameters of the Standard Model (SM) in terms of a few fundamental
ones. In other words, to achieve reduction of couplings at a more fundamental level. To
reduce the number of free parameters of a theory, and thus render it more predictive, one
is usually led to introduce more symmetry. Supersymmetric Grand Uniˇed Theories (GUTs)
are very good examples of such a procedure [1].

A complementary strategy in searching for a more fundamental theory, consists in looking
for all-loop renormalization group invariant (RGI) relations holding below the Planck scale,
which in turn are preserved down to the GUT scale [2Ä5]. Even more remarkable is the fact
that it is possible to ˇnd RGI relations among couplings that guarantee ˇniteness to all orders
in perturbation theory [6]. Through the method of reduction of couplings it is possible to
relate the gauge and Yukawa sectors of a theory, that is to achieve Gauge-Yukawa Uniˇcation
(GYU) [3].
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1. THE METHOD OF REDUCTION OF COUPLINGS

In this section we will brie�y outline the reduction of couplings method. Any RGI relation
among couplings (i.e., which does not depend on the renormalization scale μ explicitly) can
be expressed in the implicit form Φ(g1, . . . , gA) = const., which has to satisfy the partial
differential equation (PDE)

dΦ
dt

=
A∑

a=1

∂Φ
∂ga

dga

dt
=

A∑
a=1

∂Φ
∂ga

βa = ∇Φ · β = 0, (1)

where t = lnμ and βa is the β-function of ga. This PDE is equivalent to a set of ordinary
differential equations, the so-called reduction equations (REs) [5],

βg
dga

dg
= βa, a = 1, . . . , A, (2)

where g and βg are the primary coupling and its β-function, and the counting on a does not
include g. Since maximally (A−1)-independent RGI ©constraintsª in the A-dimensional space
of couplings can be imposed by the Φa's, one could, in principle, express all the couplings in
terms of a single coupling g. The strongest requirement is to demand power series solutions
to the REs,

ga =
∑
n=0

ρ(n)
a g2n+1, (3)

which formally preserve perturbative renormalizability. Remarkably, the uniqueness of such
power series solutions can be decided already at the one-loop level [5].

Searching for a power series solution of the form (3) to the REs (2) is justiˇed since
various couplings in supersymmetric theories have the same asymptotic behaviour, thus one
can rely that keeping only the ˇrst terms in the expansion is a good approximation in realistic
applications.

2. REDUCTION OF COUPLINGS IN SOFT BREAKING TERMS

The method of reducing the dimensionless couplings was extended [4, 7] to the soft
supersymmetry breaking (SSB) dimensionful parameters of N = 1 supersymmetric theories.
In addition, it was found [8,9] that RGI SSB scalar masses in gauge-Yukawa uniˇed models
satisfy a universal sum rule.

Consider the superpotential given by

W =
1
2
μijΦiΦj +

1
6
CijkΦiΦjΦk, (4)

where μij (the mass terms) and Cijk (the Yukawa couplings) are gauge-invariant tensors,
and the matter ˇeld Φi transforms according to the irreducible representation Ri of the gauge
group G. The Lagrangian for SSB terms is

−LSSB =
1
6
hijkφiφjφk +

1
2
bijφiφj +

1
2
(m2)j

iφ
∗iφj +

1
2
Mλλ + h.c., (5)
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where φi are the scalar parts of the chiral superˇelds Φi; λ are the gauginos and M is their
uniˇed mass; hijk and bij are the trilinear and bilinear dimensionful couplings, respectively,
and (m2)j

i are the soft scalars masses.
Let us recall that the one-loop β-function of the gauge coupling g is given by [10]

β(1)
g =

dg

dt
=

g3

16π2

[∑
i

T (Ri) − 3C2(G)

]
, (6)

where C2(G) is the quadratic Casimir of the adjoint representation of the associated gauge
group G. T (R) is given by the relation Tr [T aT b] = T (R)δab, where T a is the generator
of the group in the appropriate representation. Similarly, the β-functions of Cijk , by virtue
of the nonrenormalization theorem, are related to the anomalous dimension matrix γi

j of the
chiral superˇelds as

βijk
C =

dCijk

dt
= Cijlγ

l
k + Ciklγ

l
j + Cjklγ

l
i. (7)

At the one-loop level, the anomalous dimension, γ(1) i
j , of the chiral superˇeld is [10]

γ(1) i
j =

1
32π2

[CiklCjkl − 2g2C2(Ri)δij ], (8)

where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk = C∗
ijk . Then, the

N = 1 nonrenormalization theorem [11, 12] ensures that there are no extra mass and cubic-
interaction-term renormalizations, implying that the β-functions of Cijk can be expressed as
linear combinations of the anomalous dimensions γi

j .
Here we assume that the reduction equations admit power series solutions of the form

Cijk = g
∑
n=0

ρijk
(n)g

2n. (9)

In order to obtain higher-loop results instead of knowledge of explicit β-functions, which
anyway are known only up to two loops, relations among β-functions are required.

The progress made using the spurion technique [12Ä14], leads to all-loop relations among
SSB β-functions [15Ä17]. The assumption, following [16], that the relation among couplings

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d ln g
(10)

is RGI and, furthermore, the use of the all-loop gauge β-function of Novikov et al. [18]

βNSVZ
g =

g3

16π2

⎡
⎣

∑
l

T (Rl)(1 − γl/2) − 3C2(G)

1 − g2C2(G)/8π2

⎤
⎦ (11)

lead to the all-loop RGI sum rule [19] (assuming (m2)i
j = m2

jδ
i
j),

m2
i + m2

j + m2
k = |M |2

{
1

1 − g2C2(G)/(8π2)
d ln Cijk

d ln g
+

1
2

d2 ln Cijk

d(ln g)2

}
+

+
∑

l

m2
l T (Rl)

C2(G) − 8π2/g2

d ln Cijk

d ln g
. (12)
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The all-loop results on the SSB β-functions lead to all-loop RGI relations (see, e.g., [20]).
If we assume:

(a) the existence of a RGI surface on which C = C(g), or, equivalently, that

dCijk

dg
=

βijk
C

βg
(13)

holds, i.e., reduction of couplings is possible, and
(b) the existence of a RGI surface on which

hijk = −M
dC(g)ijk

d ln g
(14)

holds, too, in all orders, then one can prove [21, 22] that the following relations are RGI to
all-loops (note that in both (a) and (b) assumptions above we do not rely on speciˇc solutions
of these equations)

M = M0
βg

g
, (15)

hijk = −M0β
ijk
C , (16)

bij = −M0β
ij
μ , (17)

(m2)i
j =

1
2
|M0|2μ

dγi
j

dμ
, (18)

where M0 is an arbitrary reference mass scale to be speciˇed shortly.
Finally, we would like to emphasize that under the same assumptions (a) and (b), the

sum rule given in Eq. (12) has been proven [19] to be all-loop RGI, which gives us a
generalization of Eq. (18) to be applied in considerations of nonuniversal soft scalar masses,
which are necessary in many cases including the MSSM.

As was emphasized in [21], the set of the all-loop RGI relations (15)Ä(18) is the one
obtained in the Anomaly Mediated SB Scenario [23] by ˇxing M0 to be m3/2, which is
the natural scale in the supergravity framework. A ˇnal remark concerns the resolution of
the fatal problem of the anomaly-induced scenario in the supergravity framework, which is
here solved thanks to the sum rule (12). Other solutions have been provided by introducing
FayetÄIliopoulos terms [24].

3. APPLICATIONS OF THE REDUCTION OF COUPLINGS METHOD

In this section, we show how to apply the reduction of couplings method in two scenarios,
the MSSM and Finite Uniˇed Theories (FUT). In both cases, the reduction of couplings is
assumed to take place at the uniˇcation scale, and we will apply it only to the third generation
of fermions and in the soft supersymmetry breaking terms. After the reduction of couplings
takes place, we are left with relations at the uniˇcation scale for the Yukawa couplings of
the quarks in terms of the gauge coupling according to (9), for the trilinear terms in terms of
the Yukawa couplings and the uniˇed gaugino mass (14), and a sum rule for the soft scalar
masses also proportional to the uniˇed gaugino mass (12), as applied in each model.
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3.1. RE in the MSSM. We will examine here the reduction of couplings method applied
to the MSSM, which is deˇned by the superpotential,

W = YtH2Qtc + YbH1Qbc + YτH1Lτc + μH1H2, (19)

with soft breaking terms,

− LSSB =
∑

φ

m2
φφ∗φ +

[
m2

3H1H2 +
3∑

i=1

1
2
Miλiλi + h.c.

]
+

+ [htH2Qtc + hbH1Qbc + hτH1Lτc + h.c.], (20)

where the last line refers to the scalar components of the corresponding superˇeld. In gene-
ral, Yt,b,τ and ht,b,τ are 3× 3 matrices, but we work throughout in the approximation that the
matrices are diagonal, and neglect the couplings of the ˇrst two generations.

Assuming perturbative expansion of all three Yukawa couplings in favour of g3 satisfying
the reduction equations, we ˇnd that the coefˇcients of the Yτ coupling turn imaginary.
Therefore, we take Yτ at the GUT scale to be an independent variable. Thus, in the application
of the reduction of couplings in the MSSM that we examine here, in the ˇrst stage we
neglect the Yukawa couplings of the ˇrst two generations, while we keep Yτ and the gauge
couplings g2 and g1, which cannot be reduced consistently, as corrections. This ©reducedª
system holds at all scales, and thus serves as boundary conditions of the RGEs of the MSSM
at the uniˇcation scale, where we assume that the gauge couplings meet [20].

In that case, the coefˇcients of the expansions (again at the GUT scale)

Y 2
t

4π
= c1

g2
3

4π
+ c2

(
g2
3

4π

)2

,
Y 2

b

4π
= p1

g2
3

4π
+ p2

(
g2
3

4π

)2

(21)

are given by

c1 =
157
175

+
1
35

Kτ = 0.897 + 0.029Kτ ,

p1 =
143
175

− 6
35

Kτ = 0.817− 0.171Kτ ,

c2 =
1
4π

1457.55− 84.491Kτ − 9.66181K2
τ − 0.174927K3

τ

818.943− 89.2143Kτ − 2.14286K2
τ

,

p2 =
1
4π

1402.52− 223.777Kτ − 13.9475K2
τ − 0.174927K3

τ

818.943− 89.2143Kτ − 2.14286K2
τ

,

(22)

where

Kτ = Y 2
τ /g2

3. (23)

The couplings Yt, Yb, and g3 are not only reduced, but they provide predictions consistent
with the observed experimental values. According to the analysis presented in Sec. 2, the RGI
relations in the SSB sector hold, assuming the existence of RGI surfaces, where Eqs. (13)
and (14) are valid.
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Since all gauge couplings in the MSSM meet at the uniˇcation point, we are led to the
following boundary conditions at the GUT scale:

Y 2
t = c1g

2
U + c2g

4
U/(4π) and Y 2

b = p1g
2
U + p2g

4
U/(4π), (24)

ht,b = −MUYt,b, (25)

m2
3 = −MUμ, (26)

where MU is the uniˇcation scale; c1,2 and p1,2 are the solutions of the algebraic system of
the two reduction equations taken at the GUT scale (while keeping only the ˇrst term1 of the
perturbative expansion of the Yukawas in favour of g3 for Eqs. (25) and (26)), and to a set
of equations resulting from the application of the sum rule

m2
H2

+ m2
Q + m2

tc = M2
U , m2

H1
+ m2

Q + m2
bc = M2

U , (27)

noting that the sum rule introduces four free parameters.
3.2. Predictions of the Reduced MSSM. With these boundary conditions, we run the

MSSM RGEs down to the SUSY scale, which we take to be the geometrical average of
the stop masses, and then run the SM RGEs down to the electroweak scale (MZ ), where
we compare them with the experimental values of the third generation quark masses. The
RGEs are taken at two loops for the gauge and Yukawa couplings and at one loop for
the soft breaking parameters. We let MU and |μ| at the uniˇcation scale to vary between
∼ 1−11 TeV, for the two possible signs of μ. In evaluating the τ and bottom masses, we have
taken into account the one-loop radiative corrections that come from the SUSY breaking [25];
in particular, for large tan β they can give sizeable contributions to the bottom quark mass.

Recall that Yτ is not reduced and is a free parameter in this analysis. The parameter Kτ ,
related to Yτ through Eq. (23), is further constrained by allowing only the values that are also
compatible with the top and bottom quark masses simultaneously within 1 and 2σ of their
central experimental value. In the case that sign (μ) = +, there is no value for Kτ where
both the top and the bottom quark masses agree simultaneously with their experimental value,
therefore we only consider the negative sign of μ from now on. We use the experimental
value of the top quark pole mass as

M exp
t = (173.2 ± 0.9) GeV. (28)

The bottom mass is calculated at MZ to avoid uncertainties that come from running down to
the pole mass, and, as was previously mentioned, the SUSY radiative corrections both to the
tau and to the bottom quark masses have been taken into account [26]

Mb(MZ) = (2.83 ± 0.10) GeV. (29)

The variation of Kτ is in the range ∼ 0.37−0.49 in order to agree with the experimental
values of the bottom and top masses at 1σ, and in ∼ 0.34−0.49 if the agreement is at the
2σ level.

Finally, assuming the validity of Eq. (14) for the corresponding couplings to those that
have been reduced before, we calculate the Higgs mass as well as the whole Higgs and

1The second term can be determined once the ˇrst term is known.
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Fig. 1. a) The SUSY spectrum as a function of the reduced MSSM. From left to right are shown: the

lightest Higgs, the pseudoscalar one MA, the heavy neutral one MH , two charged Higgses MH±; then
come two stops, two sbottoms and two staus, four neutralinos, and at the end two charginos. b) The

lightest Higgs boson mass as a function of Kτ = Y 2
τ /g2

3

sparticle spectrum using Eqs. (24)Ä(27), and we present them in Fig. 1. The Higgs mass was
calculated using a ©mixed-scaleª one-loop RG approach, which is known to include the leading
two-loop corrections as evaluated by the full diagrammatic calculation [27]. However, more
reˇned Higgs mass calculations, and, in particular, the results of [28], are not (yet) included.

In Fig. 1, a, we show the full mass spectrum of the model. We ˇnd that the masses of
the heavier Higgses have relatively high values, above the TeV scale. In addition, we ˇnd a
generally heavy supersymmetric spectrum, starting with a neutralino as LSP at ∼ 500 GeV,
and comfortable agreement with the LHC bounds due to the nonobservation of coloured
supersymmetric particles [29]. Finally, note that although the μ < 0 found in our analysis
would disfavour the model in connection with the anomalous magnetic moment of the muon,
such a heavy spectrum gives only a negligible correction to the SM prediction. We plan to
extend our analysis by examining the restrictions that will be imposed in the spectrum by the
B-physics and CDM constraints.

In Fig. 1, b, we show the results for the light Higgs boson mass as a function of Kτ .
The results are in the range 123.7−126.3 GeV, where the uncertainty is due to the variation
of Kτ , the gaugino mass MU and the variation of the scalar soft masses, which are, however,
constrained by the sum rules (27). The gaugino mass MU is in the range ∼ 1.3−11 TeV,
the lower values having been discarded since they do not allow for radiative electroweak
symmetry breaking. To the lightest Higgs mass value, one has to add at least ±2 GeV
coming from unknown higher-order corrections [30]. Therefore it is in excellent agreement
with the experimental results of ATLAS and CMS [31].

3.3. Finiteness. Finiteness can be understood by considering a chiral, anomaly free, N = 1
globally supersymmetric gauge theory based on a group G with gauge coupling constant g.
Consider the superpotential Eq. (4) together with the soft supersymmetry breaking Lagrangian
Eq. (5). All the one-loop β-functions of the theory vanish if the β-function of the gauge

coupling β
(1)
g , and the anomalous dimensions of the Yukawa couplings γ

j(1)
i , vanish, i.e.,

∑
i

�(Ri) = 3C2(G),
1
2
CipqC

jpq = 2δj
i g

2C2(Ri), (30)
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where �(Ri) is the Dynkin index of Ri, and C2(G) is the quadratic Casimir invariant of
the adjoint representation of G. These conditions are also enough to guarantee two-loop
ˇniteness [32]. A striking fact is the existence of a theorem [6], that guarantees the vanishing
of the β-functions to all orders in perturbation theory. This requires that, in addition to the
one-loop ˇniteness conditions (30), the Yukawa couplings are reduced in favour of the gauge
coupling to all orders (see [33] for details). Alternatively, similar results can be obtained [34]
using an analysis of the all-loop NSVZ gauge β-function [18,35].

Since we would like to consider only ˇnite theories here, we assume that the gauge group is
a simple group and the one-loop β-function of the gauge coupling g vanishes. We also assume
that the reduction equations admit power series solutions of the Eq. (9) form. According to
the ˇniteness theorem of [6,36], the theory is then ˇnite to all orders in perturbation theory,

if, among others, the one-loop anomalous dimensions γ
j(1)
i vanish. The one- and two-loop

ˇniteness for hijk can be achieved through the relation [37]

hijk = −MCijk + . . . = −Mρijk
(0)g + O(g5), (31)

where . . . stand for higher-order terms.

In addition, it was found that the RGI SSB scalar masses in gauge-Yukawa uniˇed models
satisfy a universal sum rule at one loop [8]. This result was generalized to two loops for ˇnite
theories [9], and then to all loops for general gauge-Yukawa and ˇnite uniˇed theories [19].
From these latter results, the following soft scalar-mass sum rule is found [9]:

(m2
i + m2

j + m2
k)

MM † = 1 +
g2

16π2
Δ(2) + O(g4) (32)

for i, j, k with ρijk
(0) �= 0, where m2

i,j,k are the scalar masses and Δ(2) is the two-loop
correction which vanishes for the universal choice, i.e., when all the soft scalar masses are
the same at the uniˇcation point, as well as in the model considered here.

3.4. SU(5) Finite Uniˇed Theories. We examine an all-loop Finite Uniˇed Theory (FUT)
with SU(5) as gauge group, where the reduction of couplings has been applied to the third
generation of quarks and leptons. The particle content of the model we will study, which
we denote FUT, consists of the following supermultiplets: three (5 + 10), needed for each
of the three generations of quarks and leptons, four (5 + 5) and one 24 considered as Higgs
supermultiplets. When the gauge group of the ˇnite GUT is broken, the theory is no longer
ˇnite, and we will assume that we are left with the MSSM [2,3].

A predictive gauge-Yukawa uniˇed SU(5) model which is ˇnite to all orders, in addition
to the requirements mentioned already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δj

i .

2. Three fermion generations, in the irreducible representations 5i,10i (i = 1, 2, 3), which
obviously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs
quintet and antiquintet, which couple to the third generation.
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After the reduction of couplings the symmetry is enhanced, leading to the following
superpotential [38]:

W =
3∑

i=1

[
1
2
gu

i 10i10iHi + gd
i 10i5iHi

]
+ gu

23102103H4+

+ gd
2310253H4 + gd

3210352H4 + gf
2 H224H2 + gf

3 H324H3 +
gλ

3
(24)3. (33)

The nondegenerate and isolated solutions to γ
(1)
i = 0 give us

(gu
1 )2 =

8
5
g2, (gd

1)2 =
6
5
g2, (gu

2 )2 = (gu
3 )2 =

4
5
g2,

(gd
2)2 = (gd

3)2 =
3
5
g2, (gu

23)
2 =

4
5
g2, (gd

23)
2 = (gd

32)
2 =

3
5
g2,

(gλ)2 =
15
7

g2, (gf
2 )2 = (gf

3 )2 =
1
2
g2, (gf

1 )2 = 0, (gf
4 )2 = 0,

(34)

and from the sum rule we obtain

m2
Hu

+ 2m2
10 = M2, m2

Hd
− 2m2

10 = −M2

3
, m2

5
+ 3m2

10 =
4M2

3
, (35)

i.e., in this case we have only two free parameters m10 and M for the dimensionful sector.
As already mentioned, after the SU(5) gauge-symmetry breaking we assume, we have the

MSSM, i.e., only two Higgs doublets. This can be achieved by introducing appropriate mass
terms that allow one to perform a rotation of the Higgs sector [2,39], in such a way that only
one pair of Higgs doublets, coupled mostly to the third family, remains light and acquires
vacuum expectation values. To avoid fast proton decay, the usual ˇne tuning to achieve
doublet-triplet splitting is performed, although the mechanism is not identical to minimal
SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken, we are left with the MSSM,
with the boundary conditions for the third family given by the ˇniteness conditions, while the
other two families are not restricted.

3.5. Predictions of the Finite Model. Since the gauge symmetry is spontaneously bro-
ken below MGUT, the ˇniteness conditions do not restrict the renormalization properties at
low energies, and all that remains are boundary conditions on the gauge and Yukawa cou-
plings (34), the h = −MC (31) relation, and the soft scalar-mass sum rule at MGUT. The
analysis follows along the same lines as in the MSSM case.

In Fig. 2, we show the FUT predictions for mt and mb(MZ) as a function of the uniˇed
gaugino mass M , for the two cases μ < 0 and μ > 0. The bounds on the mb(MZ) and the
mt mass clearly single out μ < 0, as the solution most compatible with these experimental
constraints.

We now analyze the impact of further low-energy observables on the model FUT with
μ < 0. As additional constraints, we consider the rare b decays BR(b → sγ) and
BR(Bs → μ+μ−).

For the branching ratio BR(b → sγ), we take the value given by the Heavy Flavour
Averaging Group (HFAG) to be [40]

BR(b → sγ) = (3.55 ± 0.24+0.09
−0.10 ± 0.03) · 10−4. (36)
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Fig. 2. The bottom quark mass at the Z boson scale (a) and top quark pole mass (b) are shown as a
function of M , the uniˇed gaugino mass

For the branching ratio BR(Bs → μ+μ−), the SM prediction is at the level of 10−9, while
the present experimental upper limit is

BR(Bs → μ+μ−) = 4.5 · 10−9 (37)

at the 95% C.L. [41]. This is in relatively good agreement with the recent direct measurement
of this quantity by CMS and LHCb [42]. As we do not expect a sizable impact of the new
measurement on our results, we stick for our analysis to the simple upper limit.

For the lightest Higgs mass prediction we used the code FeynHiggs [30,43]. The prediction
for Mh of FUT with μ < 0 is shown in Fig. 3, where the constraints from the two B-physics
observables are taken into account. The lightest Higgs mass ranges in

Mh ∼ 121−126 GeV, (38)
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Fig. 3 (color online). The lightest Higgs mass, Mh, as a function of M for the model FUT with μ < 0

where the uncertainty comes from variations of the soft scalar masses. To this value one has
to add at least ±2 GeV coming from unknown higher-order corrections [30]1. We have also
included a small variation, due to threshold corrections at the GUT scale, of up to 5% of the
FUT boundary conditions. The masses of the heavier Higgs bosons are found at higher values
in comparison with our previous analyses [28,45]. This is due to the more stringent bound on
BR(Bs → μ+μ−), which pushes the heavy Higgs masses beyond ∼ 1 TeV, excluding their
discovery at the LHC.

We impose now a further constraint on our results, which is the value of the Higgs mass

Mh ∼ (126.0 ± 1 ± 2) GeV, (39)

where ±1 comes from the experimental error and ±2 corresponds to the theoretical error,
and see how this affects the SUSY spectrum2. We ˇnd that constraining the allowed values
of the Higgs mass puts a limit on the allowed values of the uniˇed gaugino mass, as can be
seen from Fig. 3. The red lines correspond to the pure experimental uncertainty and restrict
2 � M � 5 TeV. The blue line includes the additional theory uncertainty of ±2 GeV. Taking
this uncertainty into account no bound on M can be placed.

The full particle spectrum of model FUT with μ < 0, compliant with quark mass con-
straints and the B-physics observables is shown in Fig. 4. It can be seen from the ˇgure that
the lightest observable SUSY particle (LOSP) is the light scalar tau. In plots a and b, we
impose Mh = (126 ± 3(1)) GeV. Without any Mh restrictions, the coloured SUSY particles
have masses above ∼ 1.8 TeV in agreement with the nonobservation of those particles at
the LHC [29]. Including the Higgs mass constraints, in general, favours the lower part of

1We have not yet taken into account the improved Mh prediction presented in [44] (and implemented into the
most recent version of FeynHiggs), which will lead to an upward shift in the Higgs boson mass prediction.

2In this analysis, the new Mh evaluation [44] may have a relevant impact on the restrictions on the allowed
SUSY parameter space shown below.
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Fig. 4 (color online). The plots a and b show the spectrum after imposing the constraint Mh =

(126 ± 3(1)) GeV. The light (green) points are the various Higgs boson masses, the dark (blue) points
following are the two scalar top and bottom masses, the gray ones are the gluino masses, then come the

scalar tau masses in orange (light gray), the darker (red) points to the right are the two chargino masses
followed by the lighter shaded (pink) points indicating the neutralino masses

the SUSY particle mass spectra, but also cuts away the very low values. Neglecting the
theory uncertainties of Mh (as shown in Fig. 4, b) permits SUSY masses which would remain
unobservable at the LHC, the ILC or CLIC. On the other hand, large parts of the allowed
spectrum of the lighter scalar tau or the lighter neutralinos might be accessible at CLIC with√

s = 3 TeV.
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