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OFF-SHELL ACTIONS FOR CONFORMAL
SUPERGRAVITY IN THREE DIMENSIONS
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We review the recent construction of the N < 6 off-shell conformal supergravity actions in three
dimensions. The approach makes use of a novel superspace formulation for A -extended conformal
supergravity and the superform approach to engineer supersymmetric invariants.

PACS: 04.65.4+¢

INTRODUCTION

In a series of papers published between 1985 and 1989, the actions for N -extended
conformal supergravity theories in three dimensions (3D) were constructed. The N = 1
action was given in [1]; the A/ = 2 case was presented in [2]; the N -extended case was then
worked out in [3] as a supersymmetric Chern—Simons theory for the superconformal algebra
0sp(NM]4,R). None of these actions contained auxiliary fields. The N’ =1 and N' = 2
theories turned out to be off-shell since the corresponding Weyl multiplets do not require
auxiliary fields [1,2]. For A > 3, the actions given in [3] were on-shell.

The problem of constructing the off-shell conformal supergravity actions has only recently
been solved for the cases N’ = 3,4,5 [4] and soon after for A = 6 [5,6]. This report is a
review of the main aspects of [4,6].

Superspace techniques have been used to construct off-shell formulations for N -extended
supergravity in 3D. A comprehensive analysis of the N' = 1 case was given in [7]. The N' > 2
cases were sketched in [8] and then recently developed in [9]. The superspace formulation
of [8,9], which we refer to as SO(N') superspace, is based on gauging the structure group
SL(2,R) x SO(N). Although a formalism to construct general supergravity-matter systems
with A/ < 4 was given in [9,10], no superspace construction of conformal supergravity actions
was considered there.
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In the A/ = 1 case, it is reasonably straightforward to construct the conformal supergravity
action as a full superspace integral [7,11-13]. The action is given by

4
Scsa = — / Az d*0EQ*P {caﬁ7 — gea([ﬂ)v)s} + 16i / Pz d’0ES* +

+ % /d% d*0F {imﬁnﬁémaﬁpv —280%57 Q0" — Smﬁamm} . (D

The result is built out of the supervielbein E4™, with E~1 = Ber (E4™), the Lorentz
connection 2477, and the curvature superfields S and Co3, = C(a3,) that parameterize the
superspace covariant derivative algebra. However, an analogous construction is impossible
for N/ > 2. Nevertheless, the conformal supergravity actions with A < 6 were constructed
in [4,6] by using: (i) a novel formulation of A/-extended conformal supergravity, the so-called
conformal superspace [14]; (ii) the superform techniques [15,16] to construct supersymmetric
1variants.

1. CLOSED SUPERFORMS AND SUPERSYMMETRIC INVARIANTS

In this section, we present some generalities about the superform formalism to construct
supersymmetric invariants [15,16].

We consider a curved superspace M@/ parameterized by local coordinates 2™ = (z™, ),
where d and f are, respectively, the real dimensions of the bosonic (z) and fermionic ()
coordinates. The curved superspace is endowed with the covariant derivatives

VA = EA — WA, EA = EAJW(Z)aM, WA = wAQ(Z)XQ, (2)

where w2 is the connection associated with the local structure group, H, with generators Xy
The vielbein and connection one-forms are defined by

EA = dzMEMA, W= dzMuw s = EAwa®. 3)
The covariant derivatives satisfy the algebra
[Va.VE} = -TapVe — RapXe, “)

where T4 and R4 p¢ are, respectively, the torsion and curvatures that are associated with
the two-forms T4 := (1/2)E¢ A EBTpc? and R := (1/2)E¢ A EB Rpc?. The covariant
derivatives transform under general coordinate and structure group transformations, which
together generate the local gauge group G. The transformations of the covariant derivatives are

0gVa=[K,Val, K=¢€(2)Ve +A%2)Xa. ®)

The spinor index p, the group H, the action of X, on the covariant derivatives, the tor-
sion constraints, and other important details depend on the specific curved superspace under
consideration. For our purposes we leave these details unspecified.

Let us now construct supersymmetric invariants via superforms. Consider a closed d-form

1 1
J= EEA"’ Ao NENMTg 4, = Edsz AN, dI =0, (6)
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Given such a superform, we introduce the action (€14 := gd1""%dg, ™1 ... ¢, Td)

1

S = / J= /ddxe*fﬂ, T = Eeml”'"”“"ﬁml...md, e = det (e,,%), @)
Md .

where the bar-projection of a superfield V(z) = V(z,0) is defined by V| := V(z,0)|g=0.

It is simple to observe that under an infinitesimal general coordinate transformation, generated

by a vector field ¢ = EAE, = £M 0y, the d-form J varies as

(553 = ﬁgs = i5d3 + di53 = digﬁ. (8)

Since the variation d¢J is an exact d-form, the action S is then invariant up to boundary terms
(that we neglect).

Suitable actions must also be invariant under the structure group transformations and, if
relevant, under other symmetry transformations'. If the closed d-form J also transforms by
an exact form under the H-transformations,

o = dO(A%), )

then the functional (7) is invariant under the full local gauge group G, Eq.(5).

It is possible to formulate a prescription to construct the conformal supergravity action by
using superforms in SO(N') superspace [13].

The SO(N) superspace of [8,9] is based on the supermanifold MBIZN Jocally paramete-
rized by zM = (2™, 64), where m = 0,1,2, p = 1,2 and I = 1,..., N Its structure group is
chosen to be H = SL(2,R)xSO(N) with Lorentz and SO(N') generators X, = { M5, N1}
The SO(N') superspace describes conformal supergravity because the geometry is invariant
under super-Weyl transformations [9].

To construct the conformal supergravity action, [13] put forward the idea of using an
appropriate closed three-form JJ by making use of a two-parameter deformation of the vector
covariant derivative

Vag = Dap = Vap + ASMapg + pCap™ " Nk L, (10)

where \ and p are real parameters, and S and Co3" = C, 55"l are two curvature super-
fields. The deformed covariant derivatives D 4 = (D,,DL) := (D,, V1) obey the algebra

1 1
04,95} = -Tap“Dc — iRABCndd - §RABKLNKL- (11)
Using the new curvatures, one considers the superform equation
Loab knrg
a¥ = §R /\Rab+§R ARy, (12)

with x being a real parameter, and looks for two solutions Xcg and ¥7. The first is a
Chern—Simons form, while the second is directly built out of the curvature superfields.

'An important example is given by the super-Weyl transformations in the context of conformal supergravity
formulated in SO(N') superspace, see [4,9, 13].
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The three-forms ¥cg and X7 can be used to construct a two-parameter family of closed
forms via their difference ¥cg — X7. Next, it is necessary to determine which linear
combination J of these is super-Weyl invariant modulo exact contribution. The parameter s
is expected to be fixed by this requirement. It is also expected that J is independent of A
and p, due to its uniqueness. This method has been used in [13] to construct the N' = 1
case. However, the method is involved, and not well adapted to the construction of conformal
supergravity actions. The problem simplifies if one uses the 3D conformal superspace of [14].
This was indeed the main reason why we developed such a formalism.

2. WEYL MULTIPLET IN 3D CONFORMAL SUPERSPACE

The 3D N-extended conformal superspace is also based on the supermanifold M312V
Compared to SO(N) superspace, the structure group H is enlarged to include the generators
Xy = {Ma, N1s,D, K4}, where D is the dilatation generator, K4 = (Kq,SL) are the
special (super)conformal generators with conformal boosts (K,) and S-supersymmetry (Sé).
Together with the super-Poincaré translations P4 = (P,, QL), the operators Xz = {Pa, X.}
describe the generators of the 3D MN-extended superconformal algebra, osp(N|4,R). Their
algebra is given explicitly in [14]. The covariant derivatives have the form

1 1
Va=Es—walXy=Es— 5QA”CMbC - 5<I>AJKNJK — BaD — 345 Kp. (13)

The entire superconformal group osp(AN]4,R) is gauged in superspace as a result of the
supergravity gauge transformations G, Eq. (5), see [14] for details. It is important to note that
the action of the generators X, on the covariant derivatives

[Xa.VB} =—fus“Vo — fapX, (14)

resembles that with P4 in the superconformal algebra
(X, Pp} = — fuPo — fapXe. (15)

To describe the Weyl multiplet, the torsion and curvatures of conformal superspace have
to be constrained. The constraints chosen in [14] were such that: (i) the entire covariant
derivative algebra is expressed in terms of a single primary superfield, the A -extended super-
Cotton tensor; and (ii) the superspace geometry resembles the one describing the Yang—Mills
supermultiplet. The anticommutator of two spinor covariant derivatives with A/ > 3 is

(VL.V} =2i6""Vag +icasW! KNk — (VWKLY 1t

i
N —3%F

+ eap(Y) (Vo Vst WHER) K. (16)

1
2N —2)(N —3)

The antisymmetric superfield W75 = JWII/KL] ig the super-Cotton tensor for N > 3.
It is a conformal primary (S.W/KLP = () of dimension-1 (DWI/KL = WIJKL) and
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satisfies the Bianchi identity'
4
N -3

With N < 3, W!/EL jg zero. The properties of the super-Cotton tensor and the algebra of
covariant derivatives vary for each N < 3 case [14]. Here we review only the N > 3 cases.

The 3D N-extended Weyl multiplet involves a set of gauge fields: the vielbein e,,?, the
gravitino ¢,,¢, the SO(N) gauge field V;,,’”, and the dilatation gauge field b,,. They appear
as the lowest components of the vielbein, SO(N') and dilatation connection

Véw]KLP _ V[O{WJKLP] _ anwQ[JKL(SP]I. (17)

em® = En, Um® :=2E.n%, V!l =@, by = Bnl (18)

The other connections are defined in terms of the previous ones [4]. The nontrivial components
of the super-Cotton tensor comprise the remaining physical fields of the off-shell Weyl
multiplet and a set of composite fields [4]. The unconstrained auxiliary fields are

IJK . ¢ v LWIJKL
«

wrikr = Wikl Wq = - )] ; (19a)

X, = i thw e bl YR = LUy W KR (19b)

N -3

For N > 5, the super-Cotton tensor includes another set of physical fields defined by

(1|
(o1

on1~~~(ynhmln+4 = I(’I’L)V . .V(I;;)Wl7z+1~~ln+4] , (20)

where I(n) =i for n = 1,2 (mod 4) and I(n) = 1 for n = 3,4 (mod 4). These fields are
the field strengths of hidden (super)symmetries of the Weyl multiplet. The simplest example
is given by A/ = 6. In this case we have (up to contributions involving the gravitini)

]‘ aoc
Xaﬁll Ig — _§€Il 16(,)/(1)&55 b ]:bc_’_o(w)’ (21)

where Fop = 2e[," ey Om Ap is the field strength for an extra U(1) gauge field A,. This
property has a crucial role in constructing the conformal supergravity action for N' = 6.

3. CONFORMAL SUPERGRAVITY ACTION

In the superform construction of the off-shell conformal supergravity action in conformal
superspace, a natural ingredient is the osp(N]4,R) Chern—Simons superform Ycg. Given the
structure constants f-;° and Killing metric I';; = (—1)% f, ;° f;,% of osp(N |4, R), see [4] for
their definition and normalization, we find Y cg to be

~ 5 1 - ~ 5 -
Yes = RV AWT 5 + G A w? Aw? f,79T 4. (22)

"n the N = 4 case, WIJEL = (IJKLyy and Eq. (17) is identically satisfied. In this case, the Bianchi identity
for W is VI VIW = (1/4)617 Ve VEW.
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Note that in conformal superspace, we may treat the vielbein on the same footing as the

connections w® := (E4,w®). We define the curvature two-form of conformal superspace

as R := (R(P)*,R%) = (1/2)EB A EARAp%, where R(P)* := T4 — T4, and T4 is
the flat superspace torsion [4]. The CS form varies as an exact form under structure group
transformations

onScs = d(dw® AT ;) (23)
and satisfies the superform equation
dScs = (R%), (R®) =R’ ART,;. (24)

The explicit expression for Xcg in terms of various curvatures and connections is
pa 1 c b a - ra ol B HpIJ
Yes=—RYNQq — EQ AN NAQepe —HE ANFY AT (Va)ap — R NPy +
1
+ gcp” ANBEANBK;+2E" ATy AB —2ES AFL A B + exact form, (25)

where R := dQ + Q¢ A QL and R := d®1/ + ®IE AP/ correspond to the Riemann
and SO(N) curvature tensors, respectively. The explicit form of (R?) turns out to be

(R?) = —R(N)"Y AR(N);;, (26)

with R(N)!7 = (1/2)EBAEAR 5"’ (N) being the SO(N') curvature two-form of conformal
superspace. In the N/ = 1,2 cases, it is identically zero, (R?) = 0. This implies that the
action constructed by using (7) with J = X ¢g is invariant under all the supergravity gauge
transformations. This is consistent with the fact that the A" = 1, 2 results of [1,2] are off-shell.
On the other hand, for N > 2, (R?) # 0 and Eq. (24) implies that the CS form alone cannot
be used to define a locally supersymmetric action principle. However, this was resolved
in [4]. The idea in [4], inspired by [13] and the 4D construction of [17], was to search for
the second solution to the superform equation

dS = (R?), 4V4Spcp) + 6T1as" L picp) = (R*) acD. (27)

Since we expect the CS form to generate the on-shell conformal supergravity action, we
search for a second superform defined in terms of the auxiliary fields of the Weyl multiplet.
The other solution >z, which we refer to as the curvature induced form, should then be
constructed only in terms of the super-Cotton tensor and its covariant derivatives. It turns
out to be invariant dXr = 0. If X exists, J = Xcs — X g is an appropriate closed form
describing the action of conformal supergravity.

Let us now search for ¥ with A/ > 3. Since we want it to be constructed in terms

of WI/KL the only possible ansatz for the lowest components of Xy is [4]
Sein =0, Bapy =i (va)sy (ASEWIECWiLpg + BWH'Y Wipe™),  (28)

with A and B being two constants to be determined. Plugging the previous ansatz into Eq. (27),
gives us at the lowest dimension (the wedge products are suppressed)

0= EgEaKE§E5[ [WPQIJWKLPQ —

— (AWPORS W ped K 1 BWPORIWpoRlK)sH . (29)
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The first term in the previous expression contains a double traceless contribution of the form

IS~ A/ N

which cannot be cancelled for AV > 5. On the other hand, for N' = 4,5, Eq.(29) can be
solved and the three-form Y g constructed. Also for ' = 3, X i exists, although its structure
is different since the super-Cotton tensor in this case is a spinor superfield W, [4].

Even though the approach of [4] succeeded in constructing for the first time the N' = 3, 4,5
conformal supergravity actions, it remained unclear why the construction did not work for
N > 5. The answer was found in [6] for the N = 6 case. We now focus on this case.

There is a simple reason why the construction failed: the hidden U(1) symmetry as-
sociated with the component X,51"/¢ of the N' = 6 Weyl multiplet was not taken into
account. It turns out that, in the N' = 6 case, the Hodge dual of the Cotton tensor
W1 = (1/4)el 7KEPQW i1 p satisfies the Bianchi identity for the field strength of an
N = 6 Abelian vector multiplet

1 1
(5@5” o8 5[[2) (5555] - —5ﬁ55> WP Wrrpg, (30)

viIw/ Kl = gy 7Kl géf[JvaLWKlL. (31)

Therefore, by using W7 one can define a closed two-form F = (1/2)E? ANEAFA g, dF =0,

1
Féé = _2isaﬁWIJa Faé = _('Ya)aﬁvﬁJW”a
. o (32)
Fap = ——2abe(Y) P [VE, V5 WL

120

Associated with the field strength F' to be a gauge one-form A, F = dA. By using A and F
we now modify the osp(N|4,R) Chern-Simons form (22) by adding the U(1) CS term

Yog i=Ycs —CFAA, dSgg = (R?)—CFAF, (33)

where C is some undetermined constant. With these modifications made, the curvature induced
form with ansatz (28) turns out to solve the equation dXr = (R?) — CF A F provided we

choose C = —2. The nonzero components of X are found to be [6]
. 1
Sabl =8i(va) sy [WJPWKP - Z5‘”<WPQWPQ] , (34a)
2
Savk = —2€abe(79)4 [(VEKWPQ])WPQ - g(stDWQP)WQK} ; (34b)

. 1 1
Eabc = €abe |:g (V’YIV’YKWJK)WIJ + g(vfy[IWJK])V'y[IWJK]_

2 i
—2—5(V}WKI)V§WKJ - gEIJKLPQW[JWKLWpQ . (340)
Now the closed three-form J = X{. — X generates a locally supersymmetric action according
to the rule (7). It is a straightforward exercise to express the resulting action for AV = 6
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conformal supergravity in components. The action is [6]

1 2 )
S = 1 /d?’xe {6‘“55 <wafg72bcfg — gwafgwbghwchf — 5\1155‘}‘('yd)aﬁ('ya)gvedef\llefé—
1J 40 1y, K 1J 160 1Kk -
—2Rap " Verg — gVa Vor™ Ve g +4FwAc | 4y wry — =3 Wa K+

) 8 . ara -
+ SZX;(Xf — gEIJKLPQ’LU[J’LUKLwPQ — 82%1 (’y )aﬁ(wﬁlewJK + ngwl‘])—l—

. 1
+ 406" (V0) ap b5 s (wawJK - Z5UUJKLU)KL> } , (35

where R4, Wpd, Rap!”, and F,y, represent the component Riemann curvature, gravitini
field strength, SO(6) curvature, and U (1) field strength, respectively. We have also used for
N = 6 the following definitions of the Weyl multiplet’s auxiliary fields:

1
IJ ._ IJKLP
w "= —¢€ QWKLPQ

1
I _IIKLPQy,

oyl = _%vfy[lvvaJ]P

LWPQ ‘ )
(36)

oK = _%V[O{WJK]}7 X, = _%VQJWIJ . (37)

These are the N' = 6 Hodge duals of the fields defined in Eq. (19).

By eliminating the auxiliary fields w!’, w,'/%, X!, and 3’7, one is left with the on-
shell action, which we denote by Scgg. It corresponds to the first two lines of (35), which
come from the component projection of the Chern—Simons contribution ¢ in J. The last
three lines of (35) come from ¥y and give the contribution from the auxiliary fields to the
off-shell action, as expected. Note that, due to the U(1) Chern—Simons term, Scsc differs
from the on-shell action for A" = 6 conformal supergravity obtained in [3].

The actions for N/ < 6 can simply be obtained from (35) by using the truncation procedure
in [4,6]. As an example, let us show how it works in the N' = 6 — N = 5 case [4]. We first
need to switch off gauge fields possessing an index I = 6 together with the U(1) gauge field
Ap — 0. Then Scsg in (35) becomes the CS contribution to the AV = 5 action. As a final step,
in (35) we need to truncate the N' = 6 auxiliary fields to N'=5. With [, J, K =1,2,3,4,5
we set to zero wyy = Wa''% = X, =y’ =0 and take

1 1
16 I IJKLP ~ I1J6 IJ IJKLP
w o w = e WIKLP, Wa T ™ Wa'" = o€ WaKLP, (38a)

X5 - X, = éelJKLPXaIJKLpa Y’ -yl = %EIJKLP?JJKLP~ (38b)
The N = 3,4 cases can be obtained via a similar truncation procedure [4].
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