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We review the recent construction of the N � 6 off-shell conformal supergravity actions in three
dimensions. The approach makes use of a novel superspace formulation for N -extended conformal
supergravity and the superform approach to engineer supersymmetric invariants.
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INTRODUCTION

In a series of papers published between 1985 and 1989, the actions for N -extended
conformal supergravity theories in three dimensions (3D) were constructed. The N = 1
action was given in [1]; the N = 2 case was presented in [2]; the N -extended case was then
worked out in [3] as a supersymmetric ChernÄSimons theory for the superconformal algebra
osp(N|4, R). None of these actions contained auxiliary ˇelds. The N = 1 and N = 2
theories turned out to be off-shell since the corresponding Weyl multiplets do not require
auxiliary ˇelds [1, 2]. For N > 3, the actions given in [3] were on-shell.

The problem of constructing the off-shell conformal supergravity actions has only recently
been solved for the cases N = 3, 4, 5 [4] and soon after for N = 6 [5, 6]. This report is a
review of the main aspects of [4, 6].

Superspace techniques have been used to construct off-shell formulations for N -extended
supergravity in 3D. A comprehensive analysis of the N = 1 case was given in [7]. The N � 2
cases were sketched in [8] and then recently developed in [9]. The superspace formulation
of [8, 9], which we refer to as SO(N ) superspace, is based on gauging the structure group
SL(2, R) × SO(N ). Although a formalism to construct general supergravity-matter systems
with N � 4 was given in [9,10], no superspace construction of conformal supergravity actions
was considered there.
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In the N = 1 case, it is reasonably straightforward to construct the conformal supergravity
action as a full superspace integral [7, 11Ä13]. The action is given by

SCSG = −
∫

d3xd2θEΩαβγ

{
Cαβγ − 4

3
εα(βDγ)S

}
+ 16i

∫
d3xd2θES2 +

+
1
3

∫
d3xd2θE

{
1
4
Ωα

γ
δΩβ

δ
ρΩαβρ

γ − 2SΩα
β

γΩαγ
β − SΩαβ

αΩγ
βγ

}
. (1)

The result is built out of the supervielbein EA
M , with E−1 = Ber (EA

M ), the Lorentz
connection ΩA

βγ , and the curvature superˇelds S and Cαβγ = C(αβγ) that parameterize the
superspace covariant derivative algebra. However, an analogous construction is impossible
for N � 2. Nevertheless, the conformal supergravity actions with N � 6 were constructed
in [4,6] by using: (i) a novel formulation of N -extended conformal supergravity, the so-called
conformal superspace [14]; (ii) the superform techniques [15,16] to construct supersymmetric
invariants.

1. CLOSED SUPERFORMS AND SUPERSYMMETRIC INVARIANTS

In this section, we present some generalities about the superform formalism to construct
supersymmetric invariants [15,16].

We consider a curved superspace Md|f parameterized by local coordinates zM = (xm, θμ),
where d and f are, respectively, the real dimensions of the bosonic (x) and fermionic (θ)
coordinates. The curved superspace is endowed with the covariant derivatives

∇A := EA − ωA, EA := EA
M (z)∂M , ωA := ωA

b(z)Xb, (2)

where ωA
b is the connection associated with the local structure group, H, with generators Xb.

The vielbein and connection one-forms are deˇned by

EA := dzMEM
A, ωa := dzMωM

a = EAωA
a. (3)

The covariant derivatives satisfy the algebra

[∇A,∇B} = −TAB
C∇C − RAB

cXc, (4)

where TAB
C and RAB

c are, respectively, the torsion and curvatures that are associated with
the two-forms T A := (1/2)EC ∧ EBTBC

A and Ra := (1/2)EC ∧ EBRBC
a. The covariant

derivatives transform under general coordinate and structure group transformations, which
together generate the local gauge group G. The transformations of the covariant derivatives are

δG∇A = [K,∇A], K = ξC(z)∇C + Λa(z)Xa. (5)

The spinor index μ, the group H, the action of Xa on the covariant derivatives, the tor-
sion constraints, and other important details depend on the speciˇc curved superspace under
consideration. For our purposes we leave these details unspeciˇed.

Let us now construct supersymmetric invariants via superforms. Consider a closed d-form

J =
1
d!

EAd ∧ . . . ∧ EA1JA1···Ad
=

1
d!

dzMd ∧ . . . ∧ dzM1JM1···Md
, dJ = 0. (6)
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Given such a superform, we introduce the action (εm1···md := εa1···adea1
m1 · · · ead

md)

S =
∫

Md

J =
∫

ddx e ∗
J|, ∗

J =
1
d!

εm1···mdJm1···md
, e = det (em

a), (7)

where the bar-projection of a superˇeld V (z) = V (x, θ) is deˇned by V | := V (x, θ)|θ=0.
It is simple to observe that under an inˇnitesimal general coordinate transformation, generated
by a vector ˇeld ξ = ξAEA = ξM∂M , the d-form J varies as

δξJ = LξJ ≡ iξdJ + diξJ = diξJ. (8)

Since the variation δξJ is an exact d-form, the action S is then invariant up to boundary terms
(that we neglect).

Suitable actions must also be invariant under the structure group transformations and, if
relevant, under other symmetry transformations1. If the closed d-form J also transforms by
an exact form under the H-transformations,

δHJ = dΘ(Λa), (9)

then the functional (7) is invariant under the full local gauge group G, Eq. (5).
It is possible to formulate a prescription to construct the conformal supergravity action by

using superforms in SO(N ) superspace [13].
The SO(N ) superspace of [8,9] is based on the supermanifold M3|2N locally paramete-

rized by zM = (xm, θμ
I ), where m = 0, 1, 2, μ = 1, 2 and I = 1, . . . ,N . Its structure group is

chosen to be H = SL(2, R)×SO(N ) with Lorentz and SO(N ) generators Xa = {Mab, NIJ}.
The SO(N ) superspace describes conformal supergravity because the geometry is invariant
under super-Weyl transformations [9].

To construct the conformal supergravity action, [13] put forward the idea of using an
appropriate closed three-form J by making use of a two-parameter deformation of the vector
covariant derivative

∇αβ → Dαβ = ∇αβ + λSMαβ + ρCαβ
KLNKL, (10)

where λ and ρ are real parameters, and S and Cαβ
KL = Cαβ

[KL] are two curvature super-
ˇelds. The deformed covariant derivatives DA = (Da, DI

α) := (Da,∇I
α) obey the algebra

[DA, DB} = −TAB
CDC − 1

2
RAB

cdMcd −
1
2
RAB

KLNKL. (11)

Using the new curvatures, one considers the superform equation

dΣ =
1
2
Rab ∧ Rab +

κ

2
RIJ ∧ RIJ , (12)

with κ being a real parameter, and looks for two solutions ΣCS and ΣT . The ˇrst is a
ChernÄSimons form, while the second is directly built out of the curvature superˇelds.

1An important example is given by the super-Weyl transformations in the context of conformal supergravity
formulated in SO(N ) superspace, see [4, 9, 13].
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The three-forms ΣCS and ΣT can be used to construct a two-parameter family of closed
forms via their difference ΣCS − ΣT . Next, it is necessary to determine which linear
combination J of these is super-Weyl invariant modulo exact contribution. The parameter κ
is expected to be ˇxed by this requirement. It is also expected that J is independent of λ
and ρ, due to its uniqueness. This method has been used in [13] to construct the N = 1
case. However, the method is involved, and not well adapted to the construction of conformal
supergravity actions. The problem simpliˇes if one uses the 3D conformal superspace of [14].
This was indeed the main reason why we developed such a formalism.

2. WEYL MULTIPLET IN 3D CONFORMAL SUPERSPACE

The 3D N -extended conformal superspace is also based on the supermanifold M3|2N .
Compared to SO(N ) superspace, the structure group H is enlarged to include the generators
Xa = {Mab, NIJ , D, KA}, where D is the dilatation generator, KA = (Ka, SI

α) are the
special (super)conformal generators with conformal boosts (Ka) and S-supersymmetry (SI

α).
Together with the super-Poincar	e translations PA = (Pa, QI

α), the operators Xã = {PA, Xa}
describe the generators of the 3D N -extended superconformal algebra, osp(N|4, R). Their
algebra is given explicitly in [14]. The covariant derivatives have the form

∇A = EA − ωA
bXb = EA − 1

2
ΩA

bcMbc −
1
2
ΦA

JKNJK − BAD − FA
BKB. (13)

The entire superconformal group osp(N|4, R) is gauged in superspace as a result of the
supergravity gauge transformations G, Eq. (5), see [14] for details. It is important to note that
the action of the generators Xa on the covariant derivatives

[Xa,∇B} = −faB
C∇C − faB

cXc (14)

resembles that with PA in the superconformal algebra

[Xa, PB} = −faB
CPC − faB

cXc. (15)

To describe the Weyl multiplet, the torsion and curvatures of conformal superspace have
to be constrained. The constraints chosen in [14] were such that: (i) the entire covariant
derivative algebra is expressed in terms of a single primary superˇeld, the N -extended super-
Cotton tensor; and (ii) the superspace geometry resembles the one describing the YangÄMills
supermultiplet. The anticommutator of two spinor covariant derivatives with N > 3 is

{∇I
α,∇J

β} = 2iδIJ∇αβ + iεαβW IJKLNKL − i

N − 3
εαβ(∇γ

KW IJKL)SγL +

+
1

2(N − 2)(N − 3)
εαβ(γc)γδ(∇γK∇δLW IJKL)Kc. (16)

The antisymmetric superˇeld W IJKL = W [IJKL] is the super-Cotton tensor for N > 3.
It is a conformal primary (SI

αW JKLP = 0) of dimension-1 (DW IJKL = W IJKL) and
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satisˇes the Bianchi identity1

∇I
αW JKLP = ∇[I

α W JKLP ] − 4
N − 3

∇αQWQ[JKLδP ]I . (17)

With N � 3, W IJKL is zero. The properties of the super-Cotton tensor and the algebra of
covariant derivatives vary for each N � 3 case [14]. Here we review only the N > 3 cases.

The 3D N -extended Weyl multiplet involves a set of gauge ˇelds: the vielbein em
a, the

gravitino ψm
α
I , the SO(N ) gauge ˇeld Vm

IJ , and the dilatation gauge ˇeld bm. They appear
as the lowest components of the vielbein, SO(N ) and dilatation connection

em
a := Em

a|, ψm
α
I := 2Em

α
I |, Vm

IJ := Φm
IJ |, bm := Bm|. (18)

The other connections are deˇned in terms of the previous ones [4]. The nontrivial components
of the super-Cotton tensor comprise the remaining physical ˇelds of the off-shell Weyl
multiplet and a set of composite ˇelds [4]. The unconstrained auxiliary ˇelds are

wIJKL := WIJKL| , wα
IJK := − i

2(N − 3)
∇αLW IJKL

∣∣∣∣ , (19a)

Xα
I1···I5 := i∇[I1

α W I2···I5]
∣∣∣ , yIJKL :=

i

N − 3
∇γ[I∇γP W JKL]P

∣∣∣∣ . (19b)

For N > 5, the super-Cotton tensor includes another set of physical ˇelds deˇned by

Xα1···αn

I1···In+4 := I(n)∇[I1
(α1

· · · ∇In

αn)W
In+1···In+4]

∣∣∣ , (20)

where I(n) = i for n = 1, 2 (mod 4) and I(n) = 1 for n = 3, 4 (mod 4). These ˇelds are
the ˇeld strengths of hidden (super)symmetries of the Weyl multiplet. The simplest example
is given by N = 6. In this case we have (up to contributions involving the gravitini)

Xαβ
I1···I6 = −1

2
εI1···I6(γa)αβεabcFbc + O(ψ), (21)

where Fab = 2e[a
meb]

n∂mAn is the ˇeld strength for an extra U(1) gauge ˇeld Ab. This
property has a crucial role in constructing the conformal supergravity action for N = 6.

3. CONFORMAL SUPERGRAVITY ACTION

In the superform construction of the off-shell conformal supergravity action in conformal
superspace, a natural ingredient is the osp(N|4, R) ChernÄSimons superform ΣCS. Given the

structure constants fãb̃
c̃ and Killing metric Γãb̃ = (−1)εc̃fãd̃

c̃fb̃c̃
d̃ of osp(N|4, R), see [4] for

their deˇnition and normalization, we ˇnd ΣCS to be

ΣCS = Rb̃ ∧ ωãΓãb̃ +
1
6
ωc̃ ∧ ωb̃ ∧ ωãfãb̃

d̃Γd̃c̃. (22)

1In the N = 4 case, W IJKL = εIJKLW and Eq. (17) is identically satisˇed. In this case, the Bianchi identity
for W is ∇αI∇J

αW = (1/4)δIJ∇α
P∇P

α W .
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Note that in conformal superspace, we may treat the vielbein on the same footing as the
connections ωã := (EA, ωa). We deˇne the curvature two-form of conformal superspace
as Rã := (R(P )A, Ra) = (1/2)EB ∧ EARAB

ã, where R(P )A := T A − T̂ A, and T̂ A is
the 
at superspace torsion [4]. The CS form varies as an exact form under structure group
transformations

δHΣCS = d(dωb̃ΛaΓab̃) (23)

and satisˇes the superform equation

dΣCS = 〈R2〉, 〈R2〉 := Rb̃ ∧ RãΓãb̃. (24)

The explicit expression for ΣCS in terms of various curvatures and connections is

ΣCS = −R̂a ∧ Ωa − 1
6
Ωc ∧ Ωb ∧ Ωaεabc − 4iEa ∧ FαI ∧ F

β
I (γa)αβ − R̂IJ ∧ ΦIJ +

+
1
3
ΦIJ ∧ ΦI

K ∧ ΦKJ + 2Ea ∧ Fa ∧ B − 2Eα
I ∧ FI

α ∧ B + exact form, (25)

where R̂ab := dΩab + Ωac ∧Ωc
b and R̂IJ := dΦIJ +ΦIK ∧ΦK

J correspond to the Riemann
and SO(N ) curvature tensors, respectively. The explicit form of 〈R2〉 turns out to be

〈R2〉 = −R(N)IJ ∧ R(N)IJ , (26)

with R(N)IJ = (1/2)EB∧EARAB
IJ(N) being the SO(N ) curvature two-form of conformal

superspace. In the N = 1, 2 cases, it is identically zero, 〈R2〉 ≡ 0. This implies that the
action constructed by using (7) with J = ΣCS is invariant under all the supergravity gauge
transformations. This is consistent with the fact that the N = 1, 2 results of [1,2] are off-shell.
On the other hand, for N > 2, 〈R2〉 �= 0 and Eq. (24) implies that the CS form alone cannot
be used to deˇne a locally supersymmetric action principle. However, this was resolved
in [4]. The idea in [4], inspired by [13] and the 4D construction of [17], was to search for
the second solution to the superform equation

dΣ = 〈R2〉, 4∇[AΣBCD) + 6T[AB
EΣ|E|CD) = 〈R2〉ABCD. (27)

Since we expect the CS form to generate the on-shell conformal supergravity action, we
search for a second superform deˇned in terms of the auxiliary ˇelds of the Weyl multiplet.
The other solution ΣR, which we refer to as the curvature induced form, should then be
constructed only in terms of the super-Cotton tensor and its covariant derivatives. It turns
out to be invariant δHΣR = 0. If ΣR exists, J = ΣCS − ΣR is an appropriate closed form
describing the action of conformal supergravity.

Let us now search for ΣR with N > 3. Since we want it to be constructed in terms
of W IJKL, the only possible ansatz for the lowest components of ΣR is [4]

ΣI
α

J
β

K
γ = 0, Σa

J
β

K
γ = i (γa)βγ

(
A δJKW ILPQWILPQ + BWLPQJWLPQ

K
)
, (28)

with A and B being two constants to be determined. Plugging the previous ansatz into Eq. (27),
gives us at the lowest dimension (the wedge products are suppressed)

0 = Eα
LEαKEβ

J EβI

[
WPQIJWKL

PQ −

−
(
AWPQRSWPQRSδJ[K + BWPQRJWPQR

[K
)
δL]I

]
. (29)
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The ˇrst term in the previous expression contains a double traceless contribution of the form

(
δR
[Kδ

[I
|S| −

1
N δR

S δ
[I
[K

) (
δ
|T |
L] δ

J]
U − 1

N δ
J]
L]δ

T
U

)
WSUPQWRTPQ, (30)

which cannot be cancelled for N > 5. On the other hand, for N = 4, 5, Eq. (29) can be
solved and the three-form ΣR constructed. Also for N = 3, ΣR exists, although its structure
is different since the super-Cotton tensor in this case is a spinor superˇeld Wα [4].

Even though the approach of [4] succeeded in constructing for the ˇrst time the N = 3, 4, 5
conformal supergravity actions, it remained unclear why the construction did not work for
N > 5. The answer was found in [6] for the N = 6 case. We now focus on this case.

There is a simple reason why the construction failed: the hidden U(1) symmetry as-
sociated with the component Xαβ

I1···I6 of the N = 6 Weyl multiplet was not taken into
account. It turns out that, in the N = 6 case, the Hodge dual of the Cotton tensor
W IJ := (1/4!)εIJKLPQWKLPQ satisˇes the Bianchi identity for the ˇeld strength of an
N = 6 Abelian vector multiplet

∇[I
α W JK] = ∇[I

α W JK] − 2
5
δI[J∇αLWK]L. (31)

Therefore, by using W IJ one can deˇne a closed two-form F = (1/2)EB∧EAFAB , dF = 0,

F I
α

J
β = −2iεαβW IJ , Fa

I
α =

1
5
(γa)α

β∇βJW IJ ,

Fab = − i

120
εabc(γc)αβ [∇K

α ,∇L
β ]WKL.

(32)

Associated with the ˇeld strength F to be a gauge one-form A, F = dA. By using A and F
we now modify the osp(N|4, R) ChernÄSimons form (22) by adding the U(1) CS term

Σ′
CS := ΣCS − CF ∧ A, dΣ′

CS = 〈R2〉 − CF ∧ F, (33)

where C is some undetermined constant. With these modiˇcations made, the curvature induced
form with ansatz (28) turns out to solve the equation dΣR = 〈R2〉 − CF ∧ F provided we
choose C = −2. The nonzero components of ΣR are found to be [6]

Σa
J
β

K
γ = 8i(γa)βγ

[
W JP WK

P − 1
4
δJKWPQWPQ

]
, (34a)

Σab
K
γ = −2εabc(γc)γ

δ

[
(∇[K

δ WPQ])WPQ − 2
5
(∇P

δ WQP )WQK

]
, (34b)

Σabc = iεabc

[
1
5
(∇γI∇γKW JK)WIJ +

1
3
(∇γ[IW JK])∇γ[IWJK]−

− 2
25

(∇γ
I WKI)∇J

γ WKJ − i

3
εIJKLPQWIJWKLWPQ

]
. (34c)

Now the closed three-form J = Σ′
CS−ΣR generates a locally supersymmetric action according

to the rule (7). It is a straightforward exercise to express the resulting action for N = 6
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conformal supergravity in components. The action is [6]

S =
1
4

∫
d3x e

{
εabc

(
ωa

fgRbcfg − 2
3
ωaf

gωbg
hωch

f − i

2
Ψbc

α
I (γd)α

β(γa)β
γεdefΨef

I
γ−

− 2Rab
IJVcIJ − 4

3
Va

IJVbI
KVcKJ + 4FabAc

)
4yIJwIJ − 16i

3
w̃αIJKw̃αIJK+

+ 8iXγ
KXK

γ − 8
3
εIJKLPQwIJwKLwPQ − 8iψa

α
I (γa)α

β(w̃β
IJKwJK + XβJwIJ )+

+ 4iεabc(γa)αβψb
α
I ψc

β
J

(
wIKwJ

K − 1
4
δIJwKLwKL

)}
, (35)

where Rab
cd, Ψbc

α
I , Rab

IJ , and Fab represent the component Riemann curvature, gravitini
ˇeld strength, SO(6) curvature, and U(1) ˇeld strength, respectively. We have also used for
N = 6 the following deˇnitions of the Weyl multiplet's auxiliary ˇelds:

wIJ :=
1
4!

εIJKLPQWKLPQ

∣∣∣∣ , yIJ := − i

5
∇γ[I∇γP W J]P

∣∣∣∣ −1
2
εIJKLPQWKLWPQ

∣∣∣∣ ,

(36)

w̃α
IJK := − i

2
∇[I

α W JK]

∣∣∣∣ , Xα
I := − i

5
∇αJW IJ

∣∣∣∣ . (37)

These are the N = 6 Hodge duals of the ˇelds deˇned in Eq. (19).
By eliminating the auxiliary ˇelds wIJ , w̃α

IJK , Xα
I , and yIJ , one is left with the on-

shell action, which we denote by SCSG. It corresponds to the ˇrst two lines of (35), which
come from the component projection of the ChernÄSimons contribution Σ′

CS in J. The last
three lines of (35) come from ΣR and give the contribution from the auxiliary ˇelds to the
off-shell action, as expected. Note that, due to the U(1) ChernÄSimons term, SCSG differs
from the on-shell action for N = 6 conformal supergravity obtained in [3].

The actions for N < 6 can simply be obtained from (35) by using the truncation procedure
in [4,6]. As an example, let us show how it works in the N = 6 → N = 5 case [4]. We ˇrst
need to switch off gauge ˇelds possessing an index I = 6 together with the U(1) gauge ˇeld
Ab → 0. Then SCSG in (35) becomes the CS contribution to the N = 5 action. As a ˇnal step,
in (35) we need to truncate the N = 6 auxiliary ˇelds to N = 5. With I, J, K = 1, 2, 3, 4, 5
we set to zero wIJ = w̃α

IJK = Xα
I = yIJ = 0 and take

wI6 → wI =
1
4!

εIJKLPwJKLP , w̃α
IJ6 → wα

IJ =
1
3!

εIJKLP wαKLP , (38a)

X6
α → Xα =

1
5!

εIJKLP Xα
IJKLP , yI6 → yI =

1
4!

εIJKLP yJKLP . (38b)

The N = 3, 4 cases can be obtained via a similar truncation procedure [4].
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