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THE N = 2 GAUSSÄBONNET FROM CONFORMAL
SUPERGRAVITY

D.Butter1

NIKHEF Theory Group, Amsterdam

In a recent paper [1], we constructed a novel class of higher derivative invariants in 4D N = 2
supergravity that included, as a special case, the supersymmetric GaussÄBonnet invariant. Here we give
a brief description of these results and highlight the potential applications.

PACS: 04.65.+e

The low energy effective actions derived from string theory generically involve higher
derivative contributions in the Riemann tensor. Although usually suppressed by powers of the
Planck scale relative to the leading Einstein term, these contributions can prove signiˇcant, for
example, when calculating contributions to the conformal anomaly or to the classical entropy
of black holes (see, e.g., [2]). In dimensions d � 4, there are three O(R2) expressions even
under parity. The simplest is the square of the Ricci scalar, R2. The other two can be taken
to be the square of the Weyl tensor,

LW = (Cabcd)2 = (Rabcd)2 −
4

d − 2
(Rab)2 +

2
(d − 1)(d − 2)

R2, (1)

which transforms covariantly under Weyl transformations, gmn → e−2Λ gmn, and the GaussÄ
Bonnet combination, which we deˇne in d dimensions by

LGB = 6 e[a
meb

nec
ped]

qRmn
abRpq

cd = (Rabcd)2 − 4(Rab)2 + R2. (2)

Of these three expressions, the GaussÄBonnet combination is unique in leading to a ghost-free
higher-order propagator for the graviton2.

Our interest is in ˇnding the N = 2 supersymmetric extension of such invariants in four
dimensions. (Although the 4D GaussÄBonnet invariant is a total derivative, we are interested
in cases where it is multiplied by a scalar function φ′.) The N = 1 extensions of both LW

and LGB are well known, while the N = 2 GaussÄBonnet has remained elusive until its
discovery recently in a new class of higher derivative invariants [1].

1E-mail: dbutter@nikhef.nl
2This was an important motivation for the recent work in ˇve dimensions, where the supersymmetric GaussÄ

Bonnet combination was constructed [3].
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Let us brie	y discuss the situation in N = 1 supergravity, following the conventions
of [4]. The so-called old minimal supergravity is described in a superspace with three torsion
superˇelds: two complex chiral superˇelds Wαβγ and R and one real superˇeld Ga. Within
this framework, the EinsteinÄHilbert term is given as the full superspace volume integral

SEH = −3M2
P

∫
d4xd2θ d2θ̄ E (3)

with explicit factors of the Planck mass MP for dimensional reasons. Each of the O(R2)
invariants can be constructed. The square of the antiself-dual part of Cabcd, corresponding to
the sum of LW and the Pontryagin term, is given by the chiral superspace integral∫

d4xd2θ E WαβγWαβγ =
1
4

∫
d4x e

(
CabcdC

abcd − CabcdC̃
abcd + . . .

)
. (4)

(Following [1], we use conventions, where εabcd is imaginary.) The difference between the
GaussÄBonnet and Weyl combinations is given by the full superspace integral

SGB − SW =
∫

d4xd2θ d2θ E(8RR̄ + 4GaGa) =
∫

d4x e

(
2
3
R2 − 2(Rab)2 + . . .

)
. (5)

The most convenient N = 2 superspace is SU(2) superspace (see [5] for a discus-
sion), which explicitly gauges super-diffeomorphisms, Lorentz transformations, and SU(2)
R-symmetry1. The supergeometry is described by four fundamental dimension-1 torsion su-
perˇelds Wαβ , Yαβ , Sij , and Ga. The ˇrst three are complex and the last is real. Let us
attempt to construct invariants. The two obvious candidates are the full superspace and the
chiral superspace volume integrals. The chiral volume integral, including an explicit factor
of M2

P for dimensional reasons, turns out to give the EinsteinÄHilbert Lagrangian2

SEH = −M2
P

4

∫
d4xd4θ E + c.c. (6)

The full superspace volume integral vanishes.
The other possibility is to construct scalar Lagrangians out of the torsion superˇelds.

Because only Wαβ is chiral, there is only one apparent chiral scalar of the correct dimension
to give an O(R2) invariant, WαβWαβ . The corresponding component action is the N = 2
analogue of (4)∫

d4xd4θ E WαβWαβ = −1
2

∫
d4x e (CabcdCabcd − CabcdC̃abcd) + . . . (7)

In analogy with (5), we may also consider full superspace integrals involving torsion super-
ˇelds, but these lead to component Lagrangians of dimension six and higher:

1
M2

P

∫
d4xd4θ d4θ̄E (SijSij + Y αβYαβ + . . .) ∼ 1

M2
P

∫
d4x e (R3 + R�R + . . .).

1This superspace is versatile. It can be used to describe both conformal supergravity as well as the minimal
multiplet of N = 2 supergravity (corresponding to conformal supergravity coupled to a vector multiplet compensator).

2There is a subtlety: one of the auxiliary ˇelds yields the inconsistent equation of motion e = 0. This is rectiˇed
by coupling to a nonlinear multiplet, a tensor multiplet, or a hypermultiplet.
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This would seem to indicate that a supersymmetric version of SGB − SW does
not exist.

The resolution to this mystery is that there exists an extremely nontrivial dimension-2
combination of torsion superˇelds which turns out to be chiral,

T0 ≡ −1
6
D̄ijS̄

ij − Ȳα̇β̇ Ȳ α̇β̇ − S̄ij S̄
ij , D̄α̇i

T0 = 0, (8)

and which gives the desired supersymmetric completion,∫
d4xd4θ E T0 + c.c. = SGB − SW . (9)

The origin of this term can be understood in a manifestly superconformal framework.
Let us ˇrst reformulate the GaussÄBonnet invariant in conformal gravity, where the entire
conformal algebra is gauged, including dilatations (with generator D) and conformal boosts
(with generator Ka). The covariant derivative is given by ∇a = ea

m(∂m − (1/2)ωm
abMab −

bmD − fm
aKa), and the curvatures are constrained so that the connections ωm

ab and fm
a

are composite. The connection bm can always be gauged away, leaving em
a as the only

independent ˇeld. Any quantity in the usual formulation of Poincar
e gravity can be described
by conformal gravity coupled to a scalar compensator ˇeld φ of Weyl weight-1. For example,
the scalar kinetic term φ�cφ := φ∇a∇aφ can be rewritten using Poincar
e covariant derivatives
as φ(� + (1/6)R)φ. In the gauge φ = 1, this gives the EinsteinÄHilbert Lagrangian. We can
similarly construct the GaussÄBonnet invariant in conformal gravity. Begin by rewriting (2) as
LGB = CabcdCabcd − 2RabRab + (2/3)R2. The Weyl tensor is identiˇed with the conformal
curvature R(M)abcd. The Ricci terms can be found by taking the covariant combination

�c�c ln φ = �� lnφ+Da

(
2
3
RDa ln φ − 2RabDb ln φ

)
+

1
6
�R− 1

2
RabRab +

1
6
R2. (10)

It follows that within conformal gravity

Lχ = R(M)ab cd R(M)ab cd + 4 �c�c ln φ (11)

reduces (in the gauge φ = 1) to the GaussÄBonnet invariant, up to an additional �R term.
We know how to supersymmetrize the ˇrst term in (11), so let us focus on the second.

The easiest treatment is within conformal superspace [6], the supersymmetric analogue of
conformal gravity, where the covariant derivative ∇A = (∇αi, ∇̄α̇i,∇a) has connections for
the full superconformal algebra. The supersymmetric version of the expression (11) is simply

Sχ =
∫

d4xd4θ E
(
−WαβWαβ + 2 ∇̄4 ln Φ̄

)
+ c.c., (12)

where ∇̄4 ln Φ̄ ≡ (1/48)∇̄ij∇̄ij ln Φ̄ for some weight-1 antichiral multiplet Φ̄. In analogy to
(10), we can rewrite this superˇeld in SU(2) superspace as

∇̄4 ln Φ̄ = Δ ln Φ̄ − 1
2

T0, (13)

where Δ is the SU(2) superspace chiral projection operator, and T0 is deˇned in (8). The term
Δ ln Φ̄ is itself always chiral and vanishes in the gauge, where Φ̄ is constant. The remaining
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expression T0 is independent of Φ̄ (compare with the last three terms of (10)) and is a
nontrivial chiral invariant of SU(2) superspace.

Knowledge of the fully supersymmetric GaussÄBonnet combination resolves a puzzle in
the calculation of the entropy for BPS black holes. The original calculation of [2] found a
match between the Wald entropy and the microstate counting from string theory by considering
the higher derivative terms involving the Weyl Lagrangian coupled to vector multiplets XI

of the form ∫
d4xd4θ E F(X, WαβWαβ). (14)

It has been argued [7] that the same entropy matching could be found by replacing the
supersymmetric LW with the simple expression (2). Because the result of [2] required details
of the supersymmetric completion of LW , it was a mystery why the pure GaussÄBonnet
should match. The resolution to this puzzle is that the difference between the Weyl and
GaussÄBonnet actions is

∫
d4xd4θ E T0, and (one can show) T0 does not contribute to the

Wald entropy for BPS black holes. This implies that while one should extend (14) to the
more general expression ∫

d4xd4θ E F(X, WαβWαβ , T0), (15)

the contribution of T0 to the Wald entropy in such expressions is actually vanishing.
We emphasize that the full contribution of T0 to higher derivative actions (15) is generally

neither topological nor vanishing. In fact, one example of this class was found recently in [8]
when applying dimensional reduction to the 5D gauge-gravitational ChernÄSimons term [9]

Svww =
∫

d5x ecI

(
σIR(M)mn abR(M)mn ab − i

2
εmnpqrVm

IR(M)np
abR(M)qr ab + . . .

)

(16)
involving 5D vector multiplets σI . Using the results of [1], the resulting 4D invariant is

Svww = i
∫

d4xd4θ EcI
XI

X0

(
WαβWαβ +

2
3
∇̄4 ln X̄0

)
+ c.c., (17)

where XI is the 4D reduction of the 5D vector multiplet σI , and X0 is the KaluzaÄKlein
vector multiplet. Taking the natural gauge where the KK vector multiplet is a constant, one
recovers a linear combination of LW and LGB weighted by a factor of Im XI , along with
its supersymmetric completion involving other components of XI . The second term in (17)
proves to be critical for ˇnding the correct action and equations of motion corresponding to
the reduction of the 5D action (16).
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