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In this contribution we would like to review and clarify the relation between a large class of extended
objects in string theory and a set of generalized 	uxes appearing in string compactiˇcations. The main
focus of this work is on the interplay between branes and dualities, which leads to novel states which
are important for string physics. The main result that we would like to describe is the coupling of these
new branes to the background ˇelds of string theory and the exact correspondence between them and
generalized stringy 	uxes.

PACS: 11.25.Tq

The proposal of a U -duality symmetry underlying type-II string theory by Hull and
Townsend [1] and the description of Dp branes as R-R-charged objects by Polchinski [2]
paved the road for a better understanding of nonperturbative string physics. Branes and
dualities still remain important objects of research in string theory and useful tools in the
efforts to link this fundamental theory to low energy physics.

Two very interesting aspects of branes and dualities play a key part in the present con-
tribution. The ˇrst is that their interplay reveals a large class of new extended objects in
string theory, which are obtained via repeated application of duality transformations on the
well-known D branes. These new states have a set of unconventional properties and they
were recently classiˇed and studied from rather different viewpoints in [3Ä5].

On the other hand, at the 	ux compactiˇcation front, it was realized several years ago
that applying duality transformations to known string backgrounds can lead to situations
where the global or even local geometry appears to be ill-deˇned. Such cases were termed
nongeometric backgrounds; the essence of the term ®nongeometric¯ lies in the fact that
the standard transformations of differential geometry, namely diffeomorphisms and gauge
transformations, appear to be insufˇcient for gluing background ˇelds along different patches
of the compactiˇcation manifold. The simplest of such cases is often depicted with the
following chain of generalized 	uxes:

Habc
Ta←→ fa

bc
Tb←→ Qab

c
Tc←→ Rabc.
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Reading from left to right, this chain connects four different situations which are physically
equivalent. First, we encounter the H-background, which represents a three-dimensional torus
penetrated by NS-NS 	ux H . A single T -duality along an isometry direction of the torus
leads to the f -background. The latter is pure geometry, in the sense that the 	ux is not
due to the expectation value of some p-form background ˇeld but rather it is a result of a
nontrivial twist in the ˇbration of a two-dimensional torus over a circle. Such cases have
a precise mathematical description via geometric spaces called nilmanifolds. A second and
a third T -duality lead to the Q- and R-backgrounds, respectively. These have the property
that was mentioned above, namely, that the background ˇelds are patched along different
neighborhoods by T -dualities rather than just with diffeomorphisms or gauge transformations.
A lot of progress in understanding such cases has been recently achieved. Our aim here
is to advocate for a correspondence between these 	uxes and the exotic branes mentioned
before [6]. Pictorially,

Fabc
S←→ Habc

Ta←→ fa
bc

Tb←→ Qab
c

S←→ P ab
c�⏐⏐�

�⏐⏐�
�⏐⏐�

�⏐⏐�
�⏐⏐�

D5
S←→ NS5

T←→ KKM
T←→ 52

2
S←→ 52

3

and we would like to provide evidence for this diagram. Part of it is readily explicable. The
upper horizontal chain represents an enhancement of the previous one. The lower horizontal
chain depicts the duality relations among the set of IIB ˇvebranes. The vertical arrows treat
branes as sources of some 	ux. Indeed the D5 brane is a source of F3 	ux, F3 being the
ˇeld strength of C2. The NS5 brane sources NS-NS 	ux H , while the KKM is a source of
geometric 	ux f . In the course of this contribution we will explain the rest of the quantities
that appear in this diagram.

Let us concentrate on the type-IIB superstring, which in addition to being related by
T -duality to the type-IIA one, also possesses an S-duality as a self-duality. The type-IIB
superstring has a massless spectrum consisting of the common NS-NS sector, which includes
the dilaton φ, the KalbÄRamond 2-form B and the metric G, and its R-R sector, which includes
the p-form potentials Cp with p = 0, 2, 4, 6, 8. These are the bosonic components of the ten-
dimensional chiral IIB supergravity. Extended objects of the type-IIB superstring couple to
all these background ˇelds, either electrically or magnetically. In particular, fundamental
strings couple electrically to the KalbÄRamond gauge potential. Their tension is independent
of the string coupling and they are perturbative states of the theory. Dp branes couple to the
R-R forms Cp+1; thus IIB superstring theory contains D-instantons, D-strings, D3, D5 and
D7 branes. Their tension is proportional to g−1

s and therefore they are nonperturbative states.
NS5 branes couple magnetically to the KalbÄRamond ˇeld. This can be equivalently stated
as an electric coupling to the standard magnetic dual of B, which is a 6-form B6 deˇned via
the equation

dB6 = e−2φ � dB,

at least when the R-R forms vanish. We emphasize that we speak about the standard magnetic
dual because we shall shortly encounter a nonstandard, inequivalent dual, which gives rise to
a different brane. The NS5 brane has tension proportional to g−2

s . Finally, the KKM couples
magnetically to a KK gauge ˇeld arising from a dimensional reduction and its tension scales
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with g−2
s , too. NS5 and KKM are essentially the dual objects to the fundamental string and

the graviton.
It is well known that dualities map branes into branes. T -duality, which does not mix the

NS-NS and R-R sectors or the perturbative and nonperturbative regimes, maps Dp branes to
D(p±1) branes, depending on whether the duality is parallel (minus sign) or transverse (plus
sign) to the brane world volume. Moreover, it maps NS5 to NS5 or KKM, again depending
on the direction. T -duality relates IIA and IIB and therefore two T -dualities have to be
performed in order to stay within the same theory. On the other hand, IIB S-duality maps
the D-string to the fundamental string, the D5 brane to the NS5 brane and the KKM to itself.
All these relations are well known but eventually they are just the tip of the iceberg. Let
us explain this with an example inspired by [3]. Consider a D5 brane in type-IIB along the
directions 056789. This is an object with mass

MD5 =
1

gsl6s

9∏
i=5

Ri,

where Ri are the corresponding radii. Suppose that we perform the following chain of duality
transformations on the D5 brane: ST4T3S. Using the duality rules

Ta : Ra → l2s
Ra

, gs → ls
Ra

gs and S : gs → 1
gs

, ls → √
gsls,

this yields

MD5
S→ 1

g2
s l6s

9∏
i=5

Ri = MNS5
T4→ R2

4

g2
s l8s

9∏
i=5

Ri = MKKM
T3→

T3→ (R3R4)2

g2
s l10s

9∏
i=3

Ri = M52
2

S→ (R3R4)2

g3
s l10s

9∏
i=3

Ri = M52
3
,

where in the ˇrst line the standard branes appear and in the second line new exotic states.
The notation that we use is taken from [3]; bc

α means b world volume directions, c special
transverse directions (like the NUT of the KKM) and tension proportional to g−α

s . We
observe that the ˇvebranes of type IIB consist of D5, NS5, KKM and two exotic states 52

2

and 52
3. In lower dimensions, one encounters more and more exotic states. For example, in

three dimensions the total number of extended objects is 240, as the analysis of [3Ä5] shows.
The above example serves as an indication for the general fact that exotic branes exhibit a
diversity in their

• weight; in particular, their tension scales as g−α
s with α = 1, 2, 3, 4;

• special transverse directions; these can be anything from 0 to 7;
• monodromy properties; exotic branes are generically U -folds.
The last statement can be supported by presenting the supergravity solutions associated

to the 52
2 and 52

3 branes [7]. Let us concentrate on the ˇrst one due to a lack of space. The
nonvanishing background ˇelds are

ds2 = H(dr2 + r2dθ2) + HK−1(dx89)2 + (dx034567)2,

e2φ = HK−1, B = −θK−1dx89, K = H2 + θ2,
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where H is the brane harmonic function. It is immediately observed that traversing the
θ direction leads to global problems of the solution, since B(θ + 2π) �= B(θ) + δB.
This is reminiscent of the same situation encountered in T -dual situations of known 	ux
vacua [8]. In particular it corresponds directly to the T -dual of the Heisenberg nilman-
ifold which is associated with a Q 	ux. The latter is often discussed in the context
of T -folds [9]. T -folds are generalized manifolds where transition functions among differ-
ent neighborhoods are allowed to be T -duality transformations. They ˇnd a mathematically
precise incarnation in the context of generalized complex geometry [10, 11]. There one de-

ˇnes a generalized metric, whose general form is H =
(

g − Bg−1B Bg−1 + gβ
−g−1B − βg g−1 − βgβ

)
,

where β = (1/2)βij∂i ∧ ∂j is an antisymmetric 2-vector and we assumed that the (1,1)
tensor due to the contraction Bβ = 0 vanishes. In the case at hand, although both the
metric and B are globally ill-deˇned, when β = 0, one can instead transform the ˇelds
into a different parameterization where they become well-deˇned. This is achieved when
B = 0 and

ds2
89 = H−1((dx8)2 + (dx9)2), β = −θ∂8 ∧ ∂9.

The existence of a nonvanishing 2-vector is related to the presence of Q 	ux and in the
particular simple example it holds that Q 89

θ = ∂θβ
89. This is a ˇrst piece of evidence that a

52
2 brane sources Q 	ux. The second piece of evidence comes from the WessÄZumino term

describing the coupling of the said brane to the background ˇelds. Following a series of solid
arguments, we showed in [6] that the top coupling of this brane is to an exotic magnetic dual
of B that is deˇned through the 2-vector β as � e−2φdβ = dβ2

8 . This β2
8 ˇeld is a mixed

symmetry tensor of degree (2,8) and it was expected to be associated to the 52
2 brane via

different arguments presented in [4].

Similar results hold for the 52
3 brane. This is a U -fold associated to nongeometric R-R

	ux P , see [12]. Its top coupling in the WessÄZumino action is to a degree (8,2) exotic
dual C2

8 of C2 that is deˇned through a 2-vector γ. The latter is to the 2-form C2 what β
is to the 2-form B. This provides an interesting example of R-R nongeometry that has been
understudied in the literature so far.

According to the above, the main messages of this work can be summarized in the
following points:

• There exists a plethora of nonperturbative objects in string theory due to U -duality, the
exotic branes.

• Exotic branes couple to exotic duals of the standard gauge potentials.

• They are strongly related to nongeometric backgrounds and, in particular, they are
sources of nongeometric 	uxes.

Further study of the properties of exotic branes is expected to be very useful in order to
gain a more complete understanding of string vacua both at a conceptual level as well as for
phenomenological applications.
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