ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ

THE JACOBI IDENTITY FOR GRADED-COMMUTATIVE VARIATIONAL SCHOUTEN BRACKET REVISITED

A. V. Kiselev¹

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands

This short note contains an explicit proof of the Jacobi identity for variational Schouten bracket in \mathbb{Z}_2 -graded commutative setup; an extension of the reasoning and assertion to the noncommutative geometry of cyclic words (see [1]) is immediate. The reasoning refers to the product bundle geometry of iterated variations (see [2]); no *ad hoc* regularizations occur anywhere in this theory.

PACS: 02.40.Hw; 02.40.Ma

The Jacobi identity for variational Schouten bracket $[\![,]\!]$ is its key property in several cohomological theories. For example, one infers that the BV-Laplacian Δ or quantum BV-operator $\Omega^{\hbar} = i\hbar \Delta + [\![S^{\hbar}, \cdot]\!]$ are differentials in the Batalin–Vilkovisky formalism (available literature is immense; let us refer to [2] and [3]), or one deduces that $\partial_{\mathcal{P}} = [\![\mathcal{P}, \cdot]\!]$ yields the Poisson–Lichnerowicz complex for every variational Poisson bivector \mathcal{P} , see [1]. Likewise, a realization of zero-curvature geometry for the inverse scattering via the classical master equation $[\![S, S]\!] = 0$ opens a way for deformation quantization, which is not restricted to the BV-quantization of Chern–Simons models over threefolds². Therefore, it is mandatory to have a clear vision of the geometry of iterated variations and understand the mechanism for validity of the Jacobi identity.

A self-regularized calculus of variations, including the definitions of Δ and $[\![,]\!]$ and a rigorous proof of their interrelations, is developed in [2]. We reserved this theory's key element, the proof of Theorem 4. (iii) with Jacobi's identity for $[\![,]\!]$, to a separate paper which is this note. Referring to [2] for details and discussion, let us recall that — in a theory of variations for fields over the space-time — each integral functional³ or every test shift of the fields brings its own copy of the domain of integration into the setup; the locality of couplings between (co)/vectors attached at the domains' points ensures a restriction to diagonals in the accumulated products of bundles, whereas the operational

¹E-mail: A.V.Kiselev@rug.nl

²In fact, all these BV, Poisson, or IST models are examples of variational Lie algebroids [4] and their encoding by $\mathbf{Q}^2 = 0$. The construction of gauge automorphisms for the **Q**-cohomology determines the next generation of such structures, with new deformation quantization parameters beyond the Planck constant.

³Let all functionals that take field configurations to number be *integral* in this note; formal (sums of) products of functionals such as exp $((\mathbf{i}/h)\mathbf{S}^{\hbar})$ are dealt with by using the Leibniz rule, see [2, § 2.5].

definitions of Δ and $[\![,]\!]$ are on-the-diagonal reconfigurations of such couplings¹. We expect that the reader is familiar with the concept and notation from § 1–2.4 in [2]. In particular, we let the notation for total derivatives which stem from integrations by parts keep track of the variations' arguments, so that $((\delta s) \overleftarrow{\partial} / \partial \mathbf{y})(\mathbf{y}) \cdot \overrightarrow{\partial} \mathcal{L}(\mathbf{x}, [\mathbf{q}], [\mathbf{q}^{\dagger}]) / \partial \mathbf{q}_{\mathbf{x}}$ at $\mathbf{y} = \mathbf{x}$ becomes $\delta s(\mathbf{y}) \cdot (-\overrightarrow{d}/d\mathbf{y}) (\overrightarrow{\partial} \mathcal{L}(\mathbf{x}, [\mathbf{q}], [\mathbf{q}^{\dagger}]) / \partial \mathbf{q}_{\mathbf{x}})$ on that diagonal, see Example 2.4 on p. 34–36 of [2]. Similarly, the variational derivatives with respect to (anti)fields \mathbf{q} or \mathbf{q}^{\dagger} keep track of the test shifts which those variations come from: e.g., the formula above yields² a term in $\delta s(\mathbf{y}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{y}) (\mathcal{L}(\mathbf{x}, [\mathbf{q}], [\mathbf{q}^{\dagger}]))$ at $\mathbf{y} = \mathbf{x}$. This simplifies the reasoning³.

Theorem. Let F, G, and H be \mathbb{Z}_2 -parity homogeneous functionals; denote by $|\cdot|$ the grading so that $(-)^{|\cdot|}$ is the parity. The variational Schouten bracket $[\![,]\!]$ satisfies the shifted-graded Jacobi identity (cf. Eq. (28) in Theorem 4. (iii) on p. 30 versus Eq. (36) on p. 37 in [2]),

$$\llbracket F, \llbracket G, H \rrbracket \rrbracket = \llbracket \llbracket F, G \rrbracket, H \rrbracket + (-)^{(|F|-1)(|G|-1)} \llbracket G, \llbracket F, H \rrbracket \rrbracket.$$
⁽¹⁾

The operator $[\![F, \cdot]\!]$ is a graded derivation of $[\![,]\!]$: identity (1) is the Leibniz rule for it.

Proof. The logic is straightforward⁴ as soon as the matching of (co)vectors and reconfigurations of couplings are understood in [2, § 1–2]. We consider first the l.-h.s. of (1). By construction, we have that $\llbracket G, H \rrbracket = (G(\mathbf{x}_2)) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_2) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_3) (H(\mathbf{x}_3)) - (G(\mathbf{x}_2)) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_2) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_3) (H(\mathbf{x}_3)) - (G(\mathbf{x}_2)) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_2) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_3) (H(\mathbf{x}_3))$. Now expanding $\llbracket F, \llbracket G, H \rrbracket \rrbracket = (F(\mathbf{x}_1)) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_1) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_2) (\llbracket G, H \rrbracket) - (F(\mathbf{x}_1)) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_1) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_2) (\llbracket G, H \rrbracket)$, we obtain the sum of eight enumerated terms⁵:

$$\begin{array}{l} {}^{(1)} \ F(\mathbf{x}_{1}) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{1}) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{23}) G(\mathbf{x}_{2}) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_{2}) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) + \\ {}^{(2)} \ + (-)^{|G|} \ F(\mathbf{x}_{1}) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{1}) \cdot G(\mathbf{x}_{2}) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_{2}) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{23}) \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) - \\ {}^{(3)} \ - F(\mathbf{x}_{1}) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{1}) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{23}) \left(G(\mathbf{x}_{2}) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_{2})\right) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) - \\ {}^{(4)} \ - (-)^{|G|-1} \ F(\mathbf{x}_{1}) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{1}) \cdot G(\mathbf{x}_{2}) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_{2}) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{23}) \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) - \\ {}^{(5)} \ - F(\mathbf{x}_{1}) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{1}) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{23}) G(\mathbf{x}_{2}) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_{2}) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) - \end{array}$$

¹It is readily seen from the proof below that composite objects such as brackets of functionals retain a kind of memory of the way how they were produced; in effect, variational derivatives detect the traces of original objects' own geometries, whence a variation within one of them does not mar any of the others.

²In this note we let the arrow over a variational derivative indicate the direction along which all derivatives act — but not the opposite direction along which the test shifts were transported prior to any integration by parts (cf. [2]); we thus have $\vec{\delta s}(\mathbf{S}) = \int d\mathbf{y} \left\{ \langle \delta s(\mathbf{y}), \vec{\delta} / \delta \mathbf{q}(\mathbf{y})(\mathbf{S}(\mathbf{x})) \rangle + \langle \delta s^{\dagger}(\mathbf{y}), \vec{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y})(\mathbf{S}(\mathbf{x})) \rangle \right\}$ and (S) $\vec{\delta s} = \int d\mathbf{y} \left\{ \langle (\mathbf{S}(\mathbf{x})) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{y}), \delta s(\mathbf{y}) \rangle + \langle (\mathbf{S}(\mathbf{x})) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}), \delta s^{\dagger}(\mathbf{y}) \rangle \right\}$, where the diagonal $\mathbf{y} = \mathbf{x}$ is wrought by the coupling \langle , \rangle , see [2, §2.2–3], and we display the integration variable \mathbf{x} in the functional \mathbf{S} .

³With a bit more care taken of the order in which the factors follow each other in products, and by using the \mathbb{Z}_2 -graded Leibniz rule for left- and right-directed derivations, we show that the claim and proof of the main theorem hold true in the setup of cyclic words and brackets of necklaces (see [1] and references therein).

⁴Obviously, the l.-h.s. of (1) does *not* contain second variational derivatives of F, whereas the r.-h.s. *does*. We show that it is precisely these terms and none others which cancel out in the r.-h.s.

⁵We denote by \mathbf{z}_{ij} the integration variables which label the variations falling — in the outer brackets in (1) — on the *i*th or *j*th functional by the Leibniz rule (let *F* be first and so on, $1 \le i < j \le 3$); for convenience, we highlight *i* in \mathbf{z}_{ij} , when the variation falls on the *i*th functional — and *j* otherwise.

1478 Kiselev A. V.

$$\begin{array}{ll} {}^{\langle 6 \rangle} & -F(\mathbf{x}_{1})\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{z}_{1}) \cdot G(\mathbf{x}_{2})\overleftarrow{\delta}/\delta\mathbf{q}(\mathbf{y}_{2}) \cdot \overrightarrow{\delta}/\delta\mathbf{q}(\mathbf{z}_{23})\overrightarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) + \\ {}^{\langle 7 \rangle} & +F(\mathbf{x}_{1})\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{z}_{1}) \cdot \overrightarrow{\delta}/\delta\mathbf{q}(\mathbf{z}_{23}) G(\mathbf{x}_{2})\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{y}_{2}) \cdot \overrightarrow{\delta}/\delta\mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) + \\ {}^{\langle 8 \rangle} & +F(\mathbf{x}_{1})\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{z}_{1}) \cdot G(\mathbf{x}_{2})\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{y}_{2}) \cdot \overrightarrow{\delta}/\delta\mathbf{q}(\mathbf{z}_{23}) \overrightarrow{\delta}/\delta\mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}). \end{array}$$

Arguing as above, we see that the term $\llbracket\llbracket F, G\rrbracket, H\rrbracket$ in the r.-h.s. of (1) is¹

In the same way, we obtain the term $\llbracket G, \llbracket F, H \rrbracket \rrbracket$ not yet multiplied by the extra sign factor:

$$\begin{array}{l} {}^{\{1\}} \ G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_{2}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{13}) F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_{1}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) + \\ {}^{\{2\}} \ + (-)^{|F|} \ G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_{2}) \cdot F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_{1}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{13}) \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) - \\ {}^{\{3\}} \ - G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_{2}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{13}) \left(F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{1}) \right) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) - \\ {}^{\{4\}} \ - (-)^{|F|-1} \ G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_{2}) \cdot F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{1}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{13}) \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) \\ {}^{\{5\}} \ - G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{2}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{z}_{13}) \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) - \\ {}^{\{6\}} \ - G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{2}) \cdot F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_{1}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) + \\ {}^{\{7\}} \ + G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{2}) \cdot F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{1}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}) + \\ {}^{\{8\}} \ + G(\mathbf{x}_{2}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{z}_{2}) \cdot F(\mathbf{x}_{1}) \overleftarrow{\delta} / \delta \mathbf{q}^{\dagger}(\mathbf{y}_{1}) \cdot \overrightarrow{\delta} / \delta \mathbf{q}(\mathbf{y}_{3}) H(\mathbf{x}_{3}). \end{array}$$

Let us now use the \mathbb{Z}_2 -graded commutativity assumption for the setup. Transporting the variations of F leftmost, we restore the lexicographic order $F \prec G \prec H$. Finally, we

¹The labelling of terms by superscripts $\langle 1 \rangle - \langle 8 \rangle$ shows their matching with summands in the l.-h.s. of (1) or, for the index running from $\langle 9 \rangle$ to $\langle 12 \rangle$, points at the four second-order variations of F which cancel out in the two r.-h.s. summands in Jacobi's identity.

multiply [G, [F, H,]], reordered as above, by the sign factor $(-)^{(|F|-1)(|G|-1)}$; this yields¹ $\langle ^{(10)} (-)^{|F|-1} \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(2)} + (-)^{|G|-1} F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{13}) \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(12)} + (-)^{|F|+|G|} \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{13}) \left(F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1)\right) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_3) H(\mathbf{x}_3) \langle ^{(6)} - F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_3) + (-)^{|G|} \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(4)} + (-)^{|G|} F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(11)} + \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(11)} + \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(11)} + \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(11)} + \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(11)} + \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(11)} + \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_3) H(\mathbf{x}_3) +$ $\langle ^{(11)} + \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{z}_{13}) F(\mathbf{x}_1) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_1) \cdot G(\mathbf{x}_2) \overleftarrow{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_2) \cdot \overrightarrow{\delta}/\delta \mathbf{q}(\mathbf{y}_3) H(\mathbf{x}_3) +$

Terms $\langle 1 \rangle - \langle 8 \rangle$ are present in the r.-h.s. of (1) and terms $\langle 9 \rangle - \langle 12 \rangle$ cancel out; it is only the indices $\langle 3 \rangle$ and $\langle 12 \rangle$ which require special attention. Consider $\langle 3 \rangle$ in $\llbracket [\![F, G]\!], H \rrbracket\!]$; by relabelling the integration variables, $\mathbf{y} \rightleftharpoons \mathbf{z}$ (i.e., by swapping the test shifts), we obtain

$$-F(\mathbf{x}_1)\overleftarrow{\delta}/\delta\mathbf{q}(\mathbf{z}_1)\cdot\left(\overrightarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{z}_{12})\,G(\mathbf{x}_2)\right)\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{y}_2)\cdot\overrightarrow{\delta}/\delta\mathbf{q}(\mathbf{y}_3)\,H(\mathbf{x}_3).$$

The variation's argument in parentheses has grading |G| - 1, which yields the sign factor $(-)^{(|G|-1)-1}$, when the left-acting parity-odd variation $\delta/\delta \mathbf{q}^{\dagger}(\mathbf{y}_2)$ is brought to the other side of its argument, becoming $\delta/\delta \mathbf{q}^{\dagger}(\mathbf{y}_2)$. Hence $(-)^{|G|-2}\delta/\delta \mathbf{q}^{\dagger}(\mathbf{y}_2)(\overline{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{23})(G(\mathbf{x}_2))) \stackrel{(i)}{=} (-)^{|G|-1}\overline{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{23})(\overline{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_2)) (G(\mathbf{x}_2)) \stackrel{(ii)}{=} (-)^{|G|-1}(-)^{|G|-1}\overline{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{23})((G(\mathbf{x}_2)) \times \overline{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{y}_2))$, where (i) the parity-odd variations are swapped and (ii) the inner variational derivative is transported around G of grading |G|. The two sign factors cancel out, and the overall minus matches that near $\langle 3 \rangle$ in the l.-h.s. of (1).

We do the same with $\langle 12 \rangle$. Consider such a term in $(-)^{(|F|-1)(|G|-1)} \llbracket G, \llbracket F, H \rrbracket \rrbracket$; clearly, the factor $(-)^{|G|}$ is irrelevant because it is present also near $\langle 12 \rangle$ in $\llbracket \llbracket F, G \rrbracket, H \rrbracket$. Transporting the parity-odd variation $\overline{\delta}/\delta \mathbf{q}^{\dagger}(\mathbf{z}_{13})$ around the object of grading |F| - 1 in parentheses, we gain the factor $(-)^{|F|-2}$, which cancels out with $(-)^{|F|}$. Next, relabel $\mathbf{y} \rightleftharpoons \mathbf{z}$, which gives

$$F(\mathbf{x}_1)\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{z}_{13})\overleftarrow{\delta}/\delta\mathbf{q}^{\dagger}(\mathbf{y}_1)\cdot G(\mathbf{x}_2)\overleftarrow{\delta}/\delta\mathbf{q}(\mathbf{y}_2)\cdot\overrightarrow{\delta}/\delta\mathbf{q}(\mathbf{z}_{13}) H(\mathbf{x}_3).$$

The parity-odd variations follow in the order which is reverse with respect to that in $\langle 12 \rangle$ in [[[F, G]], H]], hence these terms cancel out. The proof is complete.

Variations δs act via graded Leibniz rule on products of integral functionals, e.g., $F \cdot [\![G, H]\!]$; within composite objects like $[\![G, H]\!]$, they act also by derivation w.r.t. own

¹For each term labelled by {1}-{8} in $[\![G, [\![F, H,]\!]\!]$, let us calculate the product of three signs: one, which was written near the respective summand, the other, which comes from the reorderings to $F \prec G$, and the third, $(-)^{(|F|-1)(|G|-1)}$; here is the list: {1}: $(-)^{(|F|-1)\cdot|G|}(-)^{(|F|-1)(|G|-1)} = (-)^{|F|-1}$, {2}: $(-)^{|F|}(-)^{|F|\cdot|G|}(-)^{(|F|-1)(|G|-1)} = (-)^{|G|-1}$, {3}: $-(-)^{(|F|-2)\cdot|G|}(-)^{(|F|-1)(|G|-1)} = (-)^{|F|+|G|}$, {4}: $-(-)^{|F|-1}(-)^{(|F|-1)\cdot|G|}(-)^{(|F|-1)\cdot|G|-1)} = -1$, {5}, {6}: $-(-)^{|F|\cdot(|G|-1)}(-)^{(|F|-1)(|G|-1)} = (-)^{|G|}$, {7}, {8}: $(-)^{(|F|-1)\cdot(|G|-1)}(-)^{(|F|-1)(|G|-1)} = +1$.

1480 Kiselev A. V.

geometries of the blocks G, H; variations are graded-permutable in each block. Neither Δ nor $[\![,]\!]$ depend on a choice of normalized test shift δs . This yields (1) and $\Delta^2(F \cdot G \cdot H) = 0$.

Acknowledgements. The author thanks the Organizing Committee of International Workshop SQS'13 «Supersymmetry and Quantum Symmetries» (July 29 – August 3, 2013; JINR Dubna, Russia) for stimulating discussions and partial financial support.

This research was supported in part by JBI RUG project 103511 (Groningen). A part of this research was done while the author was visiting at the IHÉS (Bures-sur-Yvette); the financial support and hospitality of this institution are gratefully acknowledged.

REFERENCES

- Kiselev A. V. On the Variational Noncommutative Poisson Geometry // Phys. Part. Nucl. 2012. V. 43, No. 5. P. 663–665.
- Kiselev A. V. The Geometry of Variations in Batalin–Vilkovisky Formalism // J. Phys.: Conf. Ser. 2013. V. 474, No.012024. P. 1–51.
- 3. *Batalin I., Vilkovisky G.* Gauge Algebra and Quantization // Phys. Lett. B. 1981. V. 102, No. 1. P. 27–31;

Batalin I.A., Vilkovisky G.A. Quantization of Gauge Theories with Linearly Dependent Generators // Phys. Rev. D. 1983. V. 29, No. 10. P. 2567–2582.

 Kiselev A. V., van de Leur J. W. Variational Lie Algebroids and Homological Evolutionary Vector Fields // Theor. Math. Phys. 2011. V. 167, No. 3. P. 772–784.