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THE JACOBI IDENTITY FOR GRADED-COMMUTATIVE
VARIATIONAL SCHOUTEN BRACKET REVISITED

A. V. Kiselev 1
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This short note contains an explicit proof of the Jacobi identity for variational Schouten bracket
in Z2-graded commutative setup; an extension of the reasoning and assertion to the noncommutative
geometry of cyclic words (see [1]) is immediate. The reasoning refers to the product bundle geometry
of iterated variations (see [2]); no ad hoc regularizations occur anywhere in this theory.

PACS: 02.40.Hw; 02.40.Ma

The Jacobi identity for variational Schouten bracket [[ , ]] is its key property in several
cohomological theories. For example, one infers that the BV-Laplacian Δ or quantum
BV-operator Ω� = i� Δ+[[S�, · ]] are differentials in the BatalinÄVilkovisky formalism (avail-
able literature is immense; let us refer to [2] and [3]), or one deduces that ∂P = [[P , · ]] yields
the PoissonÄLichnerowicz complex for every variational Poisson bivector P , see [1]. Like-
wise, a realization of zero-curvature geometry for the inverse scattering via the classical
master equation [[S,S]] = 0 opens a way for deformation quantization, which is not restricted
to the BV-quantization of ChernÄSimons models over threefolds2. Therefore, it is mandatory
to have a clear vision of the geometry of iterated variations and understand the mechanism
for validity of the Jacobi identity.

A self-regularized calculus of variations, including the deˇnitions of Δ and [[ , ]] and a
rigorous proof of their interrelations, is developed in [2]. We reserved this theory's key
element, the proof of Theorem 4. (iii) with Jacobi's identity for [[ , ]], to a separate paper
which is this note. Referring to [2] for details and discussion, let us recall that Å in
a theory of variations for ˇelds over the space-time Å each integral functional3 or every
test shift of the ˇelds brings its own copy of the domain of integration into the setup;
the locality of couplings between (co)/vectors attached at the domains' points ensures a
restriction to diagonals in the accumulated products of bundles, whereas the operational

1E-mail: A.V.Kiselev@rug.nl
2In fact, all these BV, Poisson, or IST models are examples of variational Lie algebroids [4] and their encoding

by Q2 = 0. The construction of gauge automorphisms for the Q-cohomology determines the next generation of
such structures, with new deformation quantization parameters beyond the Planck constant.

3Let all functionals that take ˇeld conˇgurations to number be integral in this note; formal (sums of) products of
functionals such as exp

(
(i/h)S�

)
are dealt with by using the Leibniz rule, see [2, § 2.5].
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deˇnitions of Δ and [[ , ]] are on-the-diagonal reconˇgurations of such couplings1. We expect
that the reader is familiar with the concept and notation from § 1Ä2.4 in [2]. In particular,
we let the notation for total derivatives which stem from integrations by parts keep track of

the variations' arguments, so that ((δs)
←−
∂/∂y)(y) · −→∂L

(
x, [q], [q†]

)
/∂qx at y = x becomes

δs(y) ·(−−→
d/dy)(

−→
∂L

(
x, [q], [q†]

)
/∂qx) on that diagonal, see Example 2.4 on p. 34Ä36 of [2].

Similarly, the variational derivatives with respect to (anti)ˇelds q or q† keep track of the
test shifts which those variations come from: e.g., the formula above yields2 a term in

δs(y) · −→δ/δq(y)(L(x, [q], [q† ])) at y = x. This simpliˇes the reasoning3.

Theorem. Let F , G, and H be Z2-parity homogeneous functionals; denote by | · |
the grading so that (−)|·| is the parity. The variational Schouten bracket [[ , ]] satisˇes the
shifted-graded Jacobi identity (cf. Eq. (28) in Theorem 4. (iii) on p. 30 versus Eq. (36) on p. 37
in [2]),

[[F, [[G, H ]]]] = [[[[F, G]], H ]] + (−)(|F |−1)(|G|−1) [[G, [[F, H ]]]]. (1)

The operator [[F, · ]] is a graded derivation of [[ , ]]: identity (1) is the Leibniz rule for it.
Proof. The logic is straightforward4 as soon as the matching of (co)vectors and reconˇgu-

rations of couplings are understood in [2, § 1Ä2]. We consider ˇrst the l.-h.s. of (1). By con-

struction, we have that [[G, H ]] = (G(x2))
←−
δ/δq(y2)·

−→
δ/δq†(y3)(H(x3))−(G(x2))

←−
δ/δq†(y2)·−→

δ/δq(y3)(H(x3)). Now expanding [[F, [[G, H ]]]] = (F (x1))
←−
δ /δq(z1)·

−→
δ/δq†(z23)([[G, H ]])−

(F (x1))
←−
δ/δq†(z1) ·

−→
δ/δq(z23)([[G, H ]]), we obtain the sum of eight enumerated terms5:

〈1〉 F (x1)
←−
δ/δq(z1) ·

−→
δ/δq†(z23)G(x2)

←−
δ/δq(y2) ·

−→
δ/δq†(y3)H(x3) +

〈2〉 + (−)|G| F (x1)
←−
δ/δq(z1) · G(x2)

←−
δ/δq(y2) ·

−→
δ/δq†(z23)

−→
δ/δq†(y3)H(x3) −

〈3〉 − F (x1)
←−
δ/δq(z1) ·

−→
δ/δq†(z23)

(
G(x2)

←−
δ/δq†(y2)

)
· −→δ/δq(y3) H(x3) −

〈4〉 − (−)|G|−1 F (x1)
←−
δ/δq(z1) · G(x2)

←−
δ/δq†(y2) ·

−→
δ/δq†(z23)

−→
δ/δq(y3)H(x3) −

〈5〉 − F (x1)
←−
δ/δq†(z1) ·

−→
δ/δq(z23) G(x2)

←−
δ/δq(y2) ·

−→
δ/δq†(y3)H(x3) −

1It is readily seen from the proof below that composite objects such as brackets of functionals retain a kind of
memory of the way how they were produced; in effect, variational derivatives detect the traces of original objects'
own geometries, whence a variation within one of them does not mar any of the others.

2In this note we let the arrow over a variational derivative indicate the direction along which all derivatives
act Å but not the opposite direction along which the test shifts were transported prior to any integration by parts

(cf. [2]); we thus have
−→
δs(S) =

∫
dy
{〈

δs(y),
−→
δ/δq(y)(S(x))

〉
+
〈
δs†(y),

−→
δ/δq†(y)(S(x))

〉}
and (S)

←−
δs =

∫
dy
{〈

(S(x))
←−
δ/δq(y), δs(y)

〉
+
〈
(S(x))

←−
δ/δq†(y), δs†(y)

〉}
, where the diagonal y = x is wrought by the

coupling 〈 , 〉, see [2, § 2.2Ä3], and we display the integration variable x in the functional S.
3With a bit more care taken of the order in which the factors follow each other in products, and by using the

Z2-graded Leibniz rule for left- and right-directed derivations, we show that the claim and proof of the main theorem
hold true in the setup of cyclic words and brackets of necklaces (see [1] and references therein).

4Obviously, the l.-h.s. of (1) does not contain second variational derivatives of F , whereas the r.-h.s. does. We
show that it is precisely these terms and none others which cancel out in the r.-h.s.

5We denote by zij the integration variables which label the variations falling Å in the outer brackets in (1) Å
on the ith or jth functional by the Leibniz rule (let F be ˇrst and so on, 1 � i < j � 3); for convenience, we
highlight i in zij , when the variation falls on the ith functional Å and j otherwise.
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〈6〉 − F (x1)
←−
δ/δq†(z1) · G(x2)

←−
δ/δq(y2) ·

−→
δ/δq(z23)

−→
δ/δq†(y3)H(x3) +

〈7〉 + F (x1)
←−
δ/δq†(z1) ·

−→
δ/δq(z23)G(x2)

←−
δ/δq†(y2) ·

−→
δ/δq(y3)H(x3) +

〈8〉 + F (x1)
←−
δ/δq†(z1) · G(x2)

←−
δ/δq†(y2) ·

−→
δ/δq(z23)

−→
δ/δq(y3)H(x3).

Arguing as above, we see that the term [[[[F, G]], H ]] in the r.-h.s. of (1) is1

〈9〉 F (x1)
←−
δ/δq(y1)

←−
δ/δq(z12) ·

−→
δ/δq†(y2)G(x2) ·

−→
δ/δq†(z3)H(x3) +

〈1〉 + F (x1)
←−
δ/δq(y1) ·

−→
δ/δq†(y2) G(x2)

←−
δ/δq(z12) · −→δ/δq†(z3)H(x3) −

〈10〉 − F (x1)
←−
δ/δq†(y1)

←−
δ/δq(z12) ·

−→
δ/δq(y2)G(x2) ·

−→
δ/δq†(z3)H(x3) −

〈5〉 − F (x1)
←−
δ/δq†(y1) ·

−→
δ/δq(y2) G(x2)

←−
δ/δq(z12) · −→δ/δq†(z3)H(x3) −

〈11〉 − (−)|G|−1 F (x1)
←−
δ/δq(y1)

←−
δ/δq†(z12) ·

−→
δ/δq†(y2) G(x2) ·

−→
δ/δq(z3)H(x3) −

〈3〉 − F (x1)
←−
δ/δq(y1) ·

(−→
δ/δq†(y2)G(x2)

)←−
δ/δq†(z12) · −→δ/δq(z3)H(x3) +

〈12〉 + (−)|G| F (x1)
←−
δ/δq†(y1)

←−
δ/δq†(z12) ·

−→
δ/δq(y2) G(x2) ·

−→
δ/δq(z3)H(x3) +

〈7〉 + F (x1)
←−
δ/δq†(y1) ·

−→
δ/δq(y2) G(x2)

←−
δ/δq†(z12) ·

−→
δ/δq(z3)H(x3).

In the same way, we obtain the term [[G, [[F, H ]]]] not yet multiplied by the extra sign factor:

{1} G(x2)
←−
δ/δq(z2) ·

−→
δ/δq†(z13)F (x1)

←−
δ/δq(y1) ·

−→
δ/δq†(y3)H(x3) +

{2} + (−)|F | G(x2)
←−
δ/δq(z2) · F (x1)

←−
δ/δq(y1) ·

−→
δ/δq†(z13)

−→
δ/δq†(y3)H(x3) −

{3} − G(x2)
←−
δ/δq(z2) ·

−→
δ/δq†(z13)

(
F (x1)

←−
δ/δq†(y1)

)
· −→δ/δq(y3)H(x3) −

{4} − (−)|F |−1 G(x2)
←−
δ/δq(z2) · F (x1)

←−
δ/δq†(y1) ·

−→
δ/δq†(z13)

−→
δ/δq(y3)H(x3) −

{5} − G(x2)
←−
δ/δq†(z2) ·

−→
δ/δq(z13)F (x1)

←−
δ/δq(y1) ·

−→
δ/δq†(y3)H(x3) −

{6} − G(x2)
←−
δ/δq†(z2) · F (x1)

←−
δ/δq(y1) ·

−→
δ/δq(z13)

−→
δ/δq†(y3)H(x3) +

{7} + G(x2)
←−
δ/δq†(z2) ·

−→
δ/δq(z13)F (x1)

←−
δ/δq†(y1) ·

−→
δ/δq(y3)H(x3) +

{8} + G(x2)
←−
δ/δq†(z2) · F (x1)

←−
δ/δq†(y1) ·

−→
δ/δq(z13)

−→
δ/δq(y3)H(x3).

Let us now use the Z2-graded commutativity assumption for the setup. Transporting the
variations of F leftmost, we restore the lexicographic order F ≺ G ≺ H . Finally, we

1The labelling of terms by superscripts 〈1〉 Ä 〈8〉 shows their matching with summands in the l.-h.s. of (1) or,
for the index running from 〈9〉 to 〈12〉, points at the four second-order variations of F which cancel out in the two
r.-h.s. summands in Jacobi's identity.
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multiply [[G, [[F, H, ]]]], reordered as above, by the sign factor (−)(|F |−1)(|G|−1); this yields1

〈10〉 (−)|F |−1 −→δ/δq†(z13)F (x1)
←−
δ/δq(y1) · G(x2)

←−
δ/δq(z2) ·

−→
δ/δq†(y3) H(x3) +

〈2〉 + (−)|G|−1 F (x1)
←−
δ/δq(y1) · G(x2)

←−
δ/δq(z2) ·

−→
δ/δq†(z13)

−→
δ/δq†(y3)H(x3) +

〈12〉 + (−)|F |+|G|−→δ/δq†(z13)
(
F (x1)

←−
δ/δq†(y1)

)
· G(x2)

←−
δ/δq(z2) ·

−→
δ/δq(y3)H(x3) −

〈6〉 − F (x1)
←−
δ/δq†(y1) · G(x2)

←−
δ/δq(z2) ·

−→
δ/δq†(z13)

−→
δ/δq(y3)H(x3) +

〈9〉 + (−)|G|−→δ/δq(z13)F (x1)
←−
δ/δq(y1) · G(x2)

←−
δ/δq†(z2) ·

−→
δ/δq†(y3) H(x3) +

〈4〉 + (−)|G| F (x1)
←−
δ/δq(y1) · G(x2)

←−
δ/δq†(z2) ·

−→
δ/δq(z13)

−→
δ/δq†(y3)H(x3) +

〈11〉 +
−→
δ/δq(z13)F (x1)

←−
δ/δq†(y1) · G(x2)

←−
δ/δq†(z2) ·

−→
δ/δq(y3)H(x3) +

〈8〉 + F (x1)
←−
δ/δq†(y1) · G(x2)

←−
δ/δq†(z2) ·

−→
δ/δq(z13)

−→
δ/δq(y3)H(x3).

Terms 〈1〉Ä〈8〉 are present in the r.-h.s. of (1) and terms 〈9〉Ä〈12〉 cancel out; it is only
the indices 〈3〉 and 〈12〉 which require special attention. Consider 〈3〉 in [[[[F, G]], H ]]; by
relabelling the integration variables, y � z (i.e., by swapping the test shifts), we obtain

−F (x1)
←−
δ/δq(z1) ·

(−→
δ/δq†(z12)G(x2)

)←−
δ/δq†(y2) ·

−→
δ/δq(y3) H(x3).

The variation's argument in parentheses has grading |G| − 1, which yields the sign factor

(−)(|G|−1)−1, when the left-acting parity-odd variation
←−
δ/δq†(y2) is brought to the other side

of its argument, becoming
−→
δ/δq†(y2). Hence (−)|G|−2−→δ/δq†(y2)

(−→
δ/δq†(z23) (G(x2))

) (i)
=

(−)|G|−1 −→δ/δq†(z23)
(−→

δ/δq†(y2)
(
G(x2)

)) (ii)
= (−)|G|−1 (−)|G|−1 −→δ/δq†(z23)

((
G(x2)

)
×

←−
δ/δq†(y2)

)
, where (i) the parity-odd variations are swapped and (ii) the inner variational

derivative is transported around G of grading |G|. The two sign factors cancel out, and the
overall minus matches that near 〈3〉 in the l.-h.s. of (1).

We do the same with 〈12〉. Consider such a term in (−)(|F |−1)(|G|−1)[[G, [[F, H ]]]]; clearly,
the factor (−)|G| is irrelevant because it is present also near 〈12〉 in [[[[F, G]], H ]]. Transporting
the parity-odd variation

−→
δ/δq†(z13) around the object of grading |F | − 1 in parentheses, we

gain the factor (−)|F |−2, which cancels out with (−)|F |. Next, relabel y � z, which gives

F (x1)
←−
δ/δq†(z13)

←−
δ/δq†(y1) · G(x2)

←−
δ/δq(y2) ·

−→
δ/δq(z13) H(x3).

The parity-odd variations follow in the order which is reverse with respect to that in 〈12〉 in
[[[[F, G]], H ]], hence these terms cancel out. The proof is complete. �

Variations δs act via graded Leibniz rule on products of integral functionals, e.g.,
F · [[G, H ]]; within composite objects like [[G, H ]], they act also by derivation w.r.t. own

1For each term labelled by {1}Ä{8} in [[G, [[F, H, ]]]], let us calculate the product of three signs: one,
which was written near the respective summand, the other, which comes from the reorderings to F ≺ G,
and the third, (−)(|F |−1)(|G|−1); here is the list: {1}: (−)(|F |−1)·|G|(−)(|F |−1)(|G|−1) = (−)|F |−1,
{2}: (−)|F |(−)|F |·|G|(−)(|F |−1)(|G|−1) = (−)|G|−1 , {3}: −(−)(|F |−2)·|G|(−)(|F |−1)(|G|−1) = (−)|F |+|G|,
{4}: −(−)|F |−1(−)(|F |−1)·|G|(−)(|F |−1)(|G|−1) = −1, {5}, {6}: −(−)|F |·(|G|−1)(−)(|F |−1)(|G|−1) =
(−)|G|, {7}, {8}: (−)(|F |−1)·(|G|−1)(−)(|F |−1)(|G|−1) = +1.
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geometries of the blocks G, H ; variations are graded-permutable in each block. Neither Δ
nor [[ , ]] depend on a choice of normalized test shift δs. This yields (1) and Δ2(F ·G ·H) = 0.
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