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JACKIWÄPI MODEL: A SUPERFIELD APPROACH
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We derive the off-shell nilpotent and absolutely anticommuting BecchiÄRouetÄStoraÄTyutin (BRST)
as well as anti-BRST transformations s(a)b corresponding to the YangÄMills gauge transformations of
3D JackiwÄPi model by exploiting the ©augmentedª superˇeld formalism. We also show that the CurciÄ
Ferrari restriction, which is a hallmark of any non-Abelian 1-form gauge theories, emerges naturally
within this formalism and plays an instrumental role in providing the proof of absolute anticommutativity
of s(a)b.
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INTRODUCTION

Standard Model (SM) of particle physics accounts for three out of four fundamental
interactions of nature. In spite of the stunning success of SM, which is based on the non-
Abelian 1-form gauge theories, one of the main issues with gauge theories are connected
with the co-existence of mass and gauge invariance together. However, the gauge invariance
does not necessarily imply the masslessness of gauge particles for sufˇciently strong vector
couplings [1]. In this context, it is worth mentioning the models where 1-form gauge ˇeld
acquires a mass in a natural fashion such as 4D topologically massive (non-)Abelian gauge
theories (with B ∧ F term) [2Ä4]. But these models suffer from the problems related with
renormalizability, consistency and unitarity.

Furthermore, massive gauge theories in other than (3+1)-dimensions of spacetime, which
are free from the problems of 4D topologically massive models, have been studied for a
quite some time (see, e.g., [5]). The (2 + 1)-dimensional JackiwÄPi (JP) model is one such
model where mass and gauge-invariance exist together. The JP model is a parity even model
and endowed with two sets of local continuous symmetries, namely, the usual YangÄMills
(YM) and non-YangÄMills (NYM) symmetries. This model has been studied thoroughly (see,
e.g., [6Ä9]).

In this write-up, we have applied ®augmented¯ superˇeld approach to BRST formalism in
order to derive the off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry
transformations corresponding to the YM gauge symmetry transformations of JP model. The
anticommutativity of (anti-)BRST symmetry transformations is ensured by the CurciÄFerrari
(CF) restriction which emerges naturally in this framework. We would like to point out that,
within the framework of superˇeld formalism, a general set up for BRST analysis of a general
gauge system also exists [10]. Our present analysis could be thought of as an application of
this approach to a speciˇc model having a closed gauge algebra.
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1. JACKIWÄPI MODEL: SYMMETRIES

The Lagrangian density of (2+1)-dimensional JackiwÄPi model1 is given as follows [7,8]:

L = −1
4
Fμν · Fμν − 1

4
(
Gμν + gFμν × ρ

)
·
(
Gμν + gFμν × ρ

)
+

m

2
εμνηFμν · φη, (1)

where Fμν = ∂μAν − ∂νAμ − g(Aμ × Aν) and Gμν = Dμφν − Dνφμ are 2-form curvature
tensors corresponding to the 1-form ˇelds Aμ and φμ, respectively. Moreover, ρ is a scalar
ˇeld and m represents the mass parameter. In the above, Aμ and φμ have opposite parity
which makes JP model to be a parity conserving model.

The above Lagrangian density (1) respects two sets of local symmetry transformations,
the YM gauge transformations (δ1) and NYM gauge transformations (δ2), namely [7,8],

δ1Aμ = DμΛ, δ1φμ = −g(φμ × Λ), δ1ρ = −g(ρ × Λ), (2)

δ2Aμ = 0, δ2φμ = DμΣ, δ2ρ = +Σ, δ2Fμν = 0, (3)

where Λ = Λ · T and Σ = Σ · T are SU(N) valued inˇnitesimal gauge parameters corre-
sponding to YM and NYM gauge transformations, respectively. It is straightforward to check
that δ1 and δ2 are the symmetry transformations, as: δ1L = 0, δ2L = ∂μ[(m/2)εμνηFνη · Σ].

2. AUGMENTED SUPERFIELD APPROACH: A SYNOPSIS

We apply the BonoraÄTonin superˇeld formalism [11] to derive the off-shell nilpotent
and absolutely anticommuting (anti-)BRST symmetry transformations corresponding to the
YM symmetries of the JP model. For this purpose, we ˇrst generalize the 3D basic ˇelds
to their corresponding superˇelds on the (3, 2)-dimensional supermanifold parametrized by
superspace variables ZM = (xμ, θ, θ̄), where xμ (μ = 0, 1, 2) are spacetime variables and
θ, θ̄ are Grassmannian variables (with θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0). We also generalize the
ordinary 3D exterior derivative (d) to (3, 2)-dimensional super exterior derivative (d̃). The
explicit expressions are as follows:

Aμ(x) −→ B̃μ(x, θ, θ̄), C(x) −→ F̃ (x, θ, θ̄), C̄(x) −→ ˜̄F (x, θ, θ̄),

A(1) −→ Ã(1) = dZM ÃM ≡ dxμ B̃μ(x, θ, θ̄) + dθ ˜̄F (x, θ, θ̄) + dθ̄ F̃ (x, θ, θ̄), (4)

d −→ d̃ = dZM ∂M ≡ dxμ ∂μ + dθ ∂θ + dθ̄ ∂θ̄.

Here, B̃μ(x, θ, θ̄), F̃ (x, θ, θ̄) and ˜̄F (x, θ, θ̄) are the superˇelds on the (3, 2)-dimensional
supermanifold and ∂M = (∂μ, ∂θ, ∂θ̄). In the second step, these superˇelds are expanded

1Here we take the 3D 	at Minkowski metric ημν = diag (−1, +1, +1) and the LeviÄCivita tensor follows
εμνηεμνη = −3!, εμνηεμνσ = −2! δσ

η , etc., with ε012 = +1 = −ε012. We adopt dot and cross products

R ·S = RaSa, R×S = fabcRaSbT c in the SU(N) Lie algebraic space spanned by the generators T a satisfying
the algebra [T a, T b] = fabcT c with a, b, c . . . = 1, 2, 3, . . . , N2 − 1. The covariant derivative is deˇned as
DμBa = ∂μBa − g(Aμ × B)a.
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along Grassmannian direction (θ, θ̄) as

B̃μ(x, θ, θ̄) = Aμ(x) + θR̄μ(x) + θ̄Rμ(x) + iθθ̄Sμ(x),

F̃ (x, θ, θ̄) = C(x) + iθB̄1(x) + iθ̄B1(x) + iθθ̄s(x), (5)

˜̄F (x, θ, θ̄) = C̄(x) + iθB̄2(x) + iθ̄B2(x) + iθθ̄s̄(x),

where, Rμ(x), R̄μ(x), s(x), s̄(x) are fermionic secondary ˇelds and Sμ(x), B1(x), B̄1(x),
B2(x), B̄2(x) are bosonic in nature. Finally, we take the help of horizontality condition (HC)
to determine the relationship amongst the basic and secondary ˇelds of the theory.

We note that the kinetic term corresponding to the gauge ˇeld Aμ remains invariant
under the gauge transformations (2). Thus, the HC implies that it should not be affected
by the presence of Grassmannian variables when generalized onto the (3, 2)-dimensional
supermanifold. The above statement can be, mathematically, expressed as

−1
4
Fμν · Fμν = −1

4
F̃MN · F̃MN , (6)

where F̃MN is the super curvature deˇned on the (3, 2)-dimensional supermanifold and can
be derived from the MaurerÄCartan equation: F̃ (2) = d̃Ã(1)+ig(Ã(1)∧Ã(1)) ≡ (1/2!)(dZM∧
dZN )F̃MN . The celebrated HC condition (6) leads to the following relationships amongst the
basic, auxiliary and secondary ˇelds:

Rμ = DμC, R̄μ = DμC̄, B1 = − i

2
g(C × C), B̄2 = − i

2
g(C̄ × C̄),

Sμ = DμB + ig(DμC × C̄) ≡ −DμB̄ − ig(DμC̄ × C), (7)

s = −g(B̄ × C), s̄ = +g(B × C̄), B + B̄ = −ig(C × C̄),

where we have made the choices B̄1 = B̄ and B2 = B which are, ˇnally, identiˇed with
the NakanishiÄLautrup type auxiliary ˇelds. Substituting these relationships in the super
expansion (5), we have the following explicit expansions:

B̃(h)
μ (x, θ, θ̄) = Aμ(x) + θDμC̄(x) + θ̄DμC(x) + θθ̄[iDμB − g(DμC × C̄)](x) ≡

≡ Aμ(x) + θ(sabAμ(x)) + θ̄(sbAμ(x)) + θθ̄(sbsabAμ(x)),

F̃ (h)(x, θ, θ̄) = C(x) + θ(iB̄(x)) + θ̄
[g

2
(C × C)(x)

]
+ θθ̄[−ig (B̄ × C)(x)] ≡

≡ C(x) + θ(sabC(x)) + θ̄(sbC(x)) + θθ̄ (sbsabC(x)), (8)

˜̄F (h)(x, θ, θ̄) = C̄(x) + θ
[g

2
(C̄ × C̄)(x)

]
+ θ̄(iB(x)) + θθ̄[(+ig(B × C̄)(x)] ≡

≡ C̄(x) + θ(sabC̄(x)) + θ̄(sbC̄(x)) + θθ̄(sbsabC̄(x)),

where (h), as the superscript on the superˇelds, denotes the expansions of the superˇelds
after the application of HC. Thus, we can read out the (anti-)BRST symmetry transformations
(s(a)b) corresponding to the gauge ˇeld Aμ and (anti-)ghost ˇelds (C̄)C from the above
expressions. The (anti-)BRST symmetry transformations corresponding to the auxiliary ˇelds
B and B̄ can be obtained from the requirement of nilpotency and absolute anticommutativity
properties of (anti-)BRST symmetries.
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Furthermore, in order to derive the (anti-)BRST symmetry transformations for the vector
ˇeld φμ and the auxiliary ˇeld ρ, we have to go beyond the HC. For this purpose, we take help
of gauge invariant restrictions (GIR) constituted with the help of composite ˇelds (Fμν · φη)
and (Fμν · ρ) which remain invariant under gauge transformations (2). It is clear as below

δ1(Fμν · φη) = 0, δ1(Fμν · ρ) = 0. (9)

These gauge invariant quantities are physical ones (in some sense); thus, they must remain
unaffected by the presence of Grassmannian variables when former quantities are generalized
onto the (3, 2)-dimensional supermanifold. Therefore, we have the following GIR:

F̃ (h)
μν (x, θ, θ̄) · φ̃η(x, θ, θ̄) = Fμν(x) · φη(x),

(10)
F̃ (h)

μν (x, θ, θ̄) · ρ̃(x, θ, θ̄) = Fμν(x) · ρ(x).

In the above, φ̃μ(x, θ, θ̄) and ρ̃(x, θ, θ̄) are superˇelds corresponding to the vector ˇeld φμ(x)
and ρ(x), respectively, whereas F̃

(h)
μν (x, θ, θ̄) is super 2-form curvature tensor. Now, following

the same procedure as outlined above, we ˇnd the (anti-)BRST symmetry transformations
corresponding to vector ˇeld φμ and auxiliary ˇled ρ. In explicit form, these (anti-)BRST
symmetry transformations are

sabAμ = DμC̄, sabC̄ =
g

2
(C̄ × C̄), sabB = −g (B × C̄), sabB̄ = 0,

sabφμ = −g (φμ × C̄), sabC = iB̄, sabρ = −g (ρ × C̄),
(11)

sbAμ = DμC, sbC =
g

2
(C × C), sbB̄ = −g (B̄ × C), sbB = 0,

sbφμ = −g (φμ × C), sbC̄ = iB, sbρ = −g (ρ × C).

Furthermore, it can be checked that the above-mentioned (anti-)BRST symmetry trans-
formations are off-shell nilpotent (i.e., s2

(a)b = 0) and absolutely anticommunting (i.e.,
sbsab + sabsb = 0) in nature in their operator form.

3. CURCIÄFERRARI RESTRICTION

A close look at (7) reveals that the CurciÄFerrari restriction [B + B̄ = −ig(C × C̄)] is
a natural outcome of superˇeld approach. Actually, this condition arises when we set F̃θθ̄

component of supercurvature tensor to be zero. It connects the NakanishiÄLautrup auxiliary
ˇelds B and B̄ with the (anti-)ghost ˇelds (C̄)C of the theory. The CF restriction is a
hallmark of any non-Abelian 1-form gauge theory [12] and plays a central role in providing
the proof for absolute anticommutativity of (anti-)BRST symmetry transformations. It also
plays an important role in obtaining a set of coupled Lagrangian densities which respect
the above-derived (anti-)BRST symmetry transformations (11). The details may be found
in [8,9].

CONCLUSIONS

In this talk, we summarize our results on the 3D massive JackiwÄPi model. We have
derived (anti-)BRST symmetry transformations corresponding to the YM symmetries of JP
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model. One of the novel features of this investigation is the derivation of (anti-)BRST trans-
formations for the auxiliary ˇeld ρ from our superˇeld formalism which is neither generated
by the (anti-)BRST charges nor obtained from the requirements of nilpotency and/or absolute
anticommutativity of the (anti-)BRST symmetries for our 3D model. The CurciÄFerrari re-
striction, which plays a central role in proving the proof for absolute anticommutativity of
(anti-)BRST symmetry transformations, is a natural outcome of this superˇeld approach.
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