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ON INTEGRABLE ISOSPIN PARTICLE SYSTEM
ON HIGH DIMENSIONAL QUATERNIONIC SYSTEMS

V. Yeghikyan1

Yerevan State University, Yerevan

We explicitly construct the projection map of a ˇbration of odd-dimensional complex projective
space over quaternionic projective one. Performing a Hamiltonian reduction by U(1) subset of the
isometries of both total space and bundle, we construct an integrable system of free particle on HPn

with the presence of Yang's monopole.

PACS: 11.15.-q

INTRODUCTION

Integrable systems (IS) play a crucial role in all branches of the modern theoretical
physics. In fact, any perturbation theory is a small deformation of a known integrable system.
However, there are no many known ISs around. Therefore, the introduction of any new IS
can be considered a remarkable step. By far most of the known ISs are based on the 	at
space. On the other hand, many interesting physical systems give rise to quantum mechanical
problems on curved spaces. Say, the slow motion of a particle in the gravitational ˇeld of a
Black hole is an example of mechanical system on curved space. Thus, the construction of
the integrable mechanical systems on curved spaces is desirable both from the viewpoint of
applications and for its own interest.

A common way of constructing new integrable systems is by performing a Hamiltonian
reduction from a higher dimensional more simple system. Due to the large number symmetries
of the high dimensional system, after ˇxing some set of integrals of motion we obtain still
integrable lower dimensional more complicated one.

Using the ˇrst and the second Hopf maps, performing a Hamiltonian reduction, from
the most simple free particle system in the 4D and 8D Euclidean spaces one obtains more
complicated 3- and 5-dimensional Kepler-like systems with the presence of Dirac and Yang
monopoles, respectively.

On the other hand, each Hopf map is the ˇrst members in the family of higher dimensional
spheres over the projective spaces, recall that CP

1 = S2 and HP
1 = S4:

S2k+1/S1 � CP
k, S4k+3/S3 � HP

k, (1)
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or, combining them (it is possible!):

CP
2n+1/S2 � HP

n. (2)

We will perform the Hamiltonian reduction taking as intergrals of motion the Néother
constants corresponding to the isometries of the total space, which act by isometries also in
the bundle.

The resulting system represents a free particle system on HP
n moving in the ˇeld of

(BPST) instanton. Besides the academic value this system is interesting also in another
context. The simplest, one-dimensional quaternionic Landau problem on HP 1 = S4 [1] has
been used previously for developing the model of the ©four-dimensional Hall effectª [2],
and, for this reason, it attracted much attention (see, e.g., [3] and the brief review [4]).
Nevertheless, all these studies were restricted to the systems on HP 1 = S4, and there were
no attempts to consider even the higher dimensional quaternionic Landau problem.

The paper entirely relies on [5].

1. THE GEOMETRIC CONSTRUCTION

Now, let us pass to the explicit construction of these ˇbrations. We will follow the method
developed in [6]. We start from the (2n + 2)-dimensional complex plane C

2n+2 � H
n+1

with complex coordinates λ or quaternionic ones: vi = λ2i−1 + jλ2i (i = 1, . . . , n + 1). By
deˇnition the coordinates

qα = vαv−1
n+1 ≡ vα

v̄n

||vn||2
, α = 1, . . . , n, (3)

deˇne a chart on the quaternionic projective space HPn.
The inverse formulas look as follows:

vα = qαvn+1 = qα(λ2n+1 + jλ2n+2) = λ2α−1 + jλ2α. (4)

Multiplying the last equation by λ−1
2n+2, one ˇnds

qα(z2n+1 + j) = z2α−1 + jz2α, (5)

where the quantities zr = λr/λ2n+2 (r = 1, . . . , 2n + 1) deˇne a chart on the complex
projective space CP 2n+1. It is clear that any coordinate of CP 2n+1 by itself deˇnes a chart
on a CP 1 � S2. In particular, one can consider as such the last coordinate z2n+1.

We can rewrite (5) in the following form:

z2α−1 + jz2α = qα(u + j), z2n+1 = u. (6)

The form of transition functions can be easily found from the construction described above.
For our further consideration it is convenient, instead of the quaternionic coordinates q,

to use complex coordinates w which we introduce by the following formula:

qα = w2α−1 + jw2α. (7)

In these coordinates (6) takes the following form:

z2α−1 = w2α−1u − w̄2α, z2α = w2αu + w̄2α−1, z2n+1 = u. (8)

The transition functions are obvious from the construction.
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2. THE REDUCTION

The projection map (8) enables us to perform the Hamiltonian reduction from the free
particle system on CP

2k+1 to a system on HP
n containing the Yang monopole.

We start from the natural Lagrangian/Hamiltonian on CP
2n+1:

L0 =
˙̄z · ż

1 + zz̄
− ( ˙̄zz)(żz̄)

(1 + zz̄)2
, H = (1 − zz̄) (pp̄ + (zp)(z̄p̄)) . (9)

Using (8) it reads

L =
q̇ ˙̄q

1 + qq̄
− (q̄q̇)( ˙̄qq)

(1 + qq̄)2
+

(u̇ + A)( ˙̄u + Ā)
(1 + uū)2

, (10)

where A is the complex part of the quaternionic vector potential:

A = j
(ū − j)q̄dq(u + j)

1 + ww̄

∣∣∣∣
C

. (11)

A for n = 1 coincides with the one for Yang monopole. This is the reason why we
consider it a natural generalization to higher dimensions.

For simplicity, we will split the quaternionic coordinates into the sum of two complex ones:

qα = w2α−1 + jw2α, (12)

and deˇne antisymmetric matrix

Ω = diag (ε, ε . . .), ε =
(

0 1
−1 0

)
. (13)

We can extend the transformation (8) to the canonical one by adding the following transfor-
mation rule for the conjugated momenta:

pμ =
ū

1 + uū
πμ +

1
1 + uū

Ωμν π̄ν , p2n+1 = pu − 1
1 + uū

(ūwμπμ − Ωμνwμπ̄ν) . (14)

It is an exercise to check that the canonical transformation (8), (14) leads to the following
form of the Hamiltonian:

H0 = P̄P + (1 + uū)2pup̄u, (15)

where we have introduced the covariant momenta

Pμ = πμ − ıw̄μ
I3

1 + ww̄
− Ωμνwν I+

1 + ww̄
, (16)

with the su(2) generators I±, I3 deˇning the isometries of S2:

I3 = −ı(upu − ūp̄u), I+ = p̄u + u2pu, I− = pu + ū2p̄u, (17)

{I3, I±} = ±ıI±, {I+, I−} = 2ıI3. (18)

The PP̄ is understood with respect to the standard metrics on HP
n rewritten in complex

basis (ω).
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For the most interesting Poisson brackets we have

{wμ, Pν} = δμ
ν , {Pμ, Pν} = −2

Ωμν

1 + ww̄
I+,

{
Pμ, P̄ν

}
= ı

ΩμνI3

(1 + ww̄)2
. (19)

It is clear that the operator I2 = I+I− + I2
3 acts by isometries of both the total space and

the bundle of the ˇbration (2). Thus, to perform the Hamiltonian reduction we should just
impose a condition I2 = s2 = const. The variables I will play the role of isospin variables.

CONCLUSIONS

Using explicitly constructed ˇbrations of odd-dimensional projective spaces over quater-
nionic projective ones, we have constructed a new integrable system of a free particle on HP

n

moving in the ˇeld of Yang's monopole. The resulting system possesses a Sp(2n) algebra
of Néother constants of motion of HP

n as well as a cubic algebra of hidden symmetries, thus
remaining a superintegrable one. Such a large number of symmetries allow us to modify the
system manually by adding a quadratic potential ww̄ keeping it integrable. In contrast to the
spherical (Higgs) [8] and CPn [7] oscillators, whose hidden symmetries are of the second
order in momenta, our model has additional constants of motion, which are of the third order
in momenta.
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