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THE INFLUENCE OF GRAIN BOUNDARIES
ON THE LOW-TEMPERATURE THERMAL

CONDUCTIVITY OF GRAPHENE NANORIBBONS
D.V. Kolesnikov 1, V. A. Osipov 2

Joint Institute for Nuclear Research, Dubna

The low-temperature thermal conductivity of suspended long and narrow graphene ribbon with
domain walls is investigated. Three acoustic phonon branches and the torsion mode are taken into
account. The in	uence of domain walls replaces the low-temperature ©quantum-wireª behaviour of
thermal conductivity κ ∼ T with T n behaviour, where n < 1. The transition from ©quantum-wireª to
©2D grapheneª-like behaviour is shifted to the higher temperature when domain walls are present.

‚ · ¡μÉ¥ ¨¸¸²¥¤Ê¥É¸Ö ´¨§±μÉ¥³¶¥· ÉÊ·´ Ö É¥¶²μ¶·μ¢μ¤´μ¸ÉÓ ¤²¨´´μ° ¨ Ê§±μ° ¸¢μ¡μ¤´μ ¶μ¤-
¢¥Ï¥´´μ° £· Ë¥´μ¢μ° ¶μ²μ¸±¨ ¢ ¶·¨¸ÊÉ¸É¢¨¨ ¤μ³¥´´ÒÌ ¸É¥´μ±. 
Ò²¨ ÊÎÉ¥´Ò ¢±² ¤Ò ¢¸¥Ì É·¥Ì
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³¥·´μ£μ £· Ë¥´ , ¶·¨ ¶μ¢ÒÏ¥´¨¨ É¥³¶¥· ÉÊ·Ò ¶·μ¨¸Ìμ¤¨É ¶·¨ ¡μ²ÓÏ¥° É¥³¶¥· ÉÊ·¥ ¶·¨ ´ ²¨Î¨¨
¤μ³¥´´ÒÌ ¸É¥´μ±.

PACS: 68.35.Ja; 68.65.Pq; 65.80.Ck

INTRODUCTION

Graphene today is known to have remarkable electronic and phononic properties. Certain
applications, such as nanoelectromechanical sensors (NEMS) [1] and graphene-based fuel
cells [2], require the knowledge of low-temperature characteristics of graphene. In the low-
temperature region, the interplay between ballistic transport and diffusive transport due to
rough sample borders and polycrystallic structure takes place. The presence of domain walls
in graphene and nanoribbons was investigated in several works near room temperature [3Ä5],
and they were shown to have crucial in	uence on the heat conductivity. Below we will
investigate the low-temperature thermal transport properties of graphene nanoribbons in the
presence of domain walls.

In Sec. 1, the general formalism for the calculation of thermal conductivity is developed,
which takes into account three acoustic phonon branches and ripple torsion mode. The
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dimensionless form for the heat conductivity is calculated, and the effective temperatures for
grain boundaries (GB) and rough sample border scattering mechanisms are introduced. In
Sec. 2, the heat conductivity is calculated numerically for various grain concentrations and
sizes. The role of momentum-dependent rough boundary scattering is discussed in Conclusion.
In this section, we also discuss the comparison of thermal conductivity in narrow ribbon with
the wide freestanding 2D graphene case.

1. GENERAL FORMALISM

The thermal conductivity of graphene ribbon of length L, width W and effective thickness
heff can be expressed as

κ =
1

heffLW

∑
s,q

ls(q)vs(q)
∂N0(ωs(q))

∂T
�ωs(q), (1)

where q represents phonon momentum, ls(q) represents phonon free path for the mode s,
vs(q) is the group velocity for the phonon mode, ωs(q) is the phonon dispersion relation,
and N0(ω) is the BoseÄEinstein distribution. For the long and narrow ribbon one can
replace the summation over the wider ribbon direction with the integration, so that for the
phonon branch s the dispersion relation is ωn,s = ωs(

√
q2 + q2

n), qn = nδq, δq = π/W ,
n = 0, 1, . . ., where q is the momentum in the longer direction. We take into account the
following phonon modes: the longitudal (LA) and tangential acoustic (TA) modes ωs = vsq,
s = LA, TA, the out-of-plane phonon mode (ZA) ωZA = q2/(2m), m = 2

√
ρ2D/K, ρ2D

is the of graphene 2D mass density and K is the bending stiffness, and the torsion mode
ωτ = vτ q, vτ =

√
8(1 − ν)/(ρ2DW 2) [8]. Note, that for the torsion mode only ωτ,0 branch is

presented. Introducing the dimensionless parameter x = �ω/(kBT ), one can ˇnd the thermal
conductivity in the form

κ = CT
∑
s,m

xmax∫
xmin

λs(x, T )
x2 exdx

(ex − 1)2
, (2)

where s = LA, TA, ZA, τ ,

C =
k2

BL

2πheffW�
, (3)

xmax = θs/T , xmin = mθs/T for s = LA, TA, τ , and xmin = m2θZA/T for ZA branch,
m = 0, 1/a0, 2/a0, . . . (m < W/a0 − 1), a0 being graphene primitive cell and θs being the
Debye temperature for the branch s. The relative mean free path λs(x, T ) = ls(x, T )/L can
be expressed as

λ−1
s (x, T ) = 1 + λ−1

GB + λ−1
B , (4)

where 1 stands for ideal ballistic transmission with mean free path L, λGB represents
relative mean free path due to the scattering on the polycrystalline grain boundaries, and
λB corresponds to the rough borders scattering. The λGB for LA, TA and torsion mode can
be expressed as

λGB(x, T )−1 = x
T

TGB
G

(
x

T

T0

)
, (5)
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s = LA, TA, τ , G(z) = J2
0 (z) + J2

1 (z) − J0(z)J1(z)/z, where Jn(z) is the Bessel function
of the 1st kind (see [6]),

T0 =
�vs

kBL , (6)

and L being the grain size. The grain boundary effective temperature TGB can be found as

TGB =
�vs(1 + a/L)2

2D2ν2kBL
, (7)

where D = πγs(1 − 2σ)/(1 − σ), γs is the Gréuneisen constant for branch s and σ is the
Poisson constant, ν is the disclination angle in the disclination dipole wall, the average
distance between grain boundaries is a, and (1 + a/L)−2 is a packing coefˇcient. Notice
that while TGB depends on a/L, T0 is a function of L only. For ZA mode with quadratic
dispersion relation the grain boundary scattering term in reduced mean free path reads

λGB(x, T )−1 = γ2
ZA(x, T )

√
x

T

T ′
GB

G
(√

x
T

T0

)
, (8)

where γZA is the momentum-dependent Gréuneisen constant for ZA mode, T0 = �/(2L2mkB)
and

T ′
GB =

�(1 + a/L)4

8mkB[D′2ν2L]2
, (9)

where D′ = π(1 − 2σ)/(1 − σ) (see [5] for detail).
The reduced mean free path due to rough boundary scattering can be expressed as (see [7])

λB(q) =
W (1 + P )
L(1 − P )

, (10)

P = exp (−4(qΔ)2 cos θb), Δ being mean square deviation of ribbon width and θb being
angle parameter, varying from θB = 0 for armchair borders to θB = π/3 for zig-zag borders.
Expanding the exponent for small Δ, one can ˇnd λB as

λB(x, T )−1 =
(

x
T

TB

)2

, (11)

TB =
�vs

kBΔ

√
W

2L cos θb
. (12)

For ZA mode the rough boundary term is the following:

λB(x, T )−1 = x
T

Tb
, (13)

where

Tb =
�

2

4mkBΔ2

W

L cos θb
. (14)
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2. RESULTS

We have calculated numerically the heat conductivity using Eq. (2) for W = 2.46 nm,
L = 1 μm ribbon.

One can see in the Figure the single-crystal thermal conductivity (dotted curve), and
the thermal conductivity in the presence of domain walls (solid and dashed curves, rep-
resenting L = W and L = W/2, respectively). One can see that for the defect-free
case κ ∼ T at temperatures below 30 K (quantum-wire behaviour, see [9]), while κ ∼
T 1.5 at temperatures above 30 K, which is the well-known low-temperature behaviour of
2D graphene. This behaviour is in good agreement with the elastic-shell-based analyti-
cal calculations [8]. On the contrary, the grain boundary scattering leads to the behaviour
κ ∼ T n, where 0.3 < n < 1, depending on the grain concentration (solid and dashed
curves). At the higher temperatures (T > T0/2, see Table 1), the grain boundary scatter-
ing leads to the constant mean free path, which results in κ ∼ T behaviour, and at even
higher temperatures Å to the normal ©2Dª- like behaviour. The temperature of transmis-
sion from ©grain boundaryª to ©2Dª behaviour is determined by two factors: the thresh-
old temperatures T0/2 and the ribbon width W . One can see, that for L = W these
factors are acting simultaneously (solid curves), while for L = W/2 the threshold tem-
peratures are higher and ©grain boundaryª behaviour continues until higher temperatures
(dashed curves).

The in	uence of rough boundaries with Δ ≈ 0.1W was also calculated. For all the phonon
modes TB was found to be above 70Ä100 K, so that the in	uence of edge roughness was
found to decrease the power n in T n behaviour in both polycrystal and single-crystal cases at
high temperatures, decreasing with the grain concentration. At the high grain concentrations
a/L ≈ 0 this in	uence was found to be negligible. As for the roles of various phonon modes,

The thermal conductivity vs. temperature for a/L = 0.0, 2.0, 9.0 and L = 2.46 nm (solid curves, from

bottom to top) and L = 1.23 nm (dashed curves, from bottom to top). The dotted curve represents

defect-free case. The thin lines correspond to the functions
√

T , T and T 3/2
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Table 1. The threshold temperature at different grain sizes for three phonon branches

L, nm T0, K (LA) T0, K (TA) T0, K (ZA) T0, K (τ )

1.23 132.0 84.2 1.2 3.66

2.46 66.0 42.1 0.6 1.83

Table 2. The grain boundary temperature at different effective distances between grains for the
case of high-angle grain boundaries (ν = 1/12)

a/L TGB, mK TGB, mK T ′
GB, mK TGB, mK

(LA) (TA) (ZA) (τ )

0.0 15 55 1.3 · 10−6 0.03

2.0 135 495 1.06 · 10−4 0.25

9.0 1497 5506 0.013 2.77

the ZA mode was found to dominate other modes for the single-crystal case only. The
presence of grain boundaries gave rise to the deformation potential-type scattering, leading to
the suppression of ZA mode due to the high momentum-dependent Gréuneisen constant even
at low reduced grain concentration (a/L ≈ 10). The LA and TA modes were found to have
effectively equal in	uence on the thermal conductivity, while the low-energy torsion mode
plays role at low temperatures only.

CONCLUSION

In conclusion, we have investigated the in	uence of grain boundaries on the heat con-
ductivity of graphene ribbons. Similar to the case of 2D graphene samples, the power in the
power-law dependence of thermal conductivity on temperature is reduced due to the presence
of domain walls (cf. [5]). At higher temperatures the grain boundary scattering results in
constant mean free path and reducing the role of 	exural ZA phonon mode, reducing the
magnitude of heat conductivity and leaving the power-law temperature dependence intact.
The difference between the 2D graphene and ribbon cases is the presence of one-dimensional
quantum-wire behaviour at the temperatures below the geometry-driven threshold temperature.
When grain boundaries are presented, this behaviour is also modiˇed below the GB threshold
temperature, and this temperature is always equal to or higher than the temperature modiˇ-
cation due to ribbon width (quantum-wire threshold). The reason for the relation between
temperatures is geometrical: both the GB threshold and the quantum-wire threshold temper-
atures are dependent on the effective size (the grain size and the ribbon width, respectively),
and the size of the grain is naturally limited with the lowest size of the sample.

This work has been supported by the Russian Foundation for Basic Research under grant
No. 12-02-01081.
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