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Using the most advanced model of the hadron resonance gas, we reveal, at chemical freeze-out,
remarkable irregularities such as an abrupt change of the effective number of degrees of freedom and
plateaus in the collision-energy dependence of the entropy per baryon, total pion number per baryon, and
thermal pion number per baryon at laboratory energies 6.9Ä11.6 GeV. On the basis of the generalized
shock adiabat model, we show that these plateaus give evidence for the thermodynamically anomalous
properties of the mixed-phase at its boundary to the quarkÄgluon plasma (QGP). A new signal for the
QGP formation is suggested and justiˇed.
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INTRODUCTION

During the last thirty years of searching for the QGP in heavy-ion collision experiments
rather many signals of its formation were suggested, but neither direct evidence for the QGP
nor a clear signal of a QGP-hadron mixed phase have been observed up to now. Although
some irregularities, called in the literature as the Kink [1], the Strangeness Horn [2] and the
Step [3], were observed and are considered to be signals of the onset of deconˇnement [4],
their relation to the QGP-hadron mixed phase is far from being clear. The worst, however, is
that despite the multiple claims of the authors of [4] about existence of the statistical model
of early stage, in fact, none of the mentioned irregularities can be explained within a single
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framework and, hence, up to now it is unclear what exactly do these irregularities evidence
for. Therefore, additional and independent justiˇcation of these irregularities is absolutely
necessary.

Evidently, searching for other irregularities and signals of mixed-phase formation and
their justiˇcation are no less signiˇcant. In fact, these tasks are of great importance for the
success of the planned heavy-ion collision experiments at JINRÄNICA and GSIÄFAIR, which
are aimed at the QGP-hadron mixed-phase ˇnding [5]. However, until recently the searches
for new irregularities and signals of mixed-phase formation were not very successful, since
they require a realistic model, which is able to accurately describe the existing experimental
data and, thus, provide us with reliable information about the late stages of the heavy-ion
collision process.

The recent extensions [6Ä9] of the hadron resonance gas model [10Ä14] provide us with
the most successful description of available hadronic multiplicities measured in heavy-ion
collisions at AGS, SPS, and RHIC energies. The global values of χ2/dof � 1.16 and
χ2/dof � 1.06 achieved, respectively, in [7] and [8] for 111 independent multiplicity ratios
measured at fourteen values of collision energy, give us conˇdence that the irregularities
shown in Figs. 1 and 2 are not artifacts of the model and indeed re	ect reality. From Fig. 1
one can see that the entropy density s increases by a factor of 4 in a range of laboratory
energies per nucleon Elab � 8.9−11.6 GeV. At the same time, the chemical freeze-out (FO)
temperature changes from 95 to 127 MeV and the baryonic chemical potential μB drops
from 586 to 531 MeV [7]. In other words, for a 30% increase in the laboratory energy
the ratio s/T 3 increases by 70%. A similar change can be seen in the effective number of
degrees of freedom in the same energy range, cf. Fig. 2 for the chemical FO pressure in units
of T 4. Note, that a similar (and a somewhat stronger) rapid change in the number of effective
degrees of freedom is observed in the most recent (former) version of the hadron resonance
gas model [8, 9] ([6, 13]).

As one can see from Fig. 2, at chemical FO a more dramatic change is experienced by
the so-called generalized speciˇc volume X = (ε + p)/ρ2

B , where ε is the energy density,

Fig. 1. Energy dependence of entropy density (circles) and temperature (squares) at chemical freeze-out

extracted in [7] on hadron multiplicities measured in heavy-ion collisions at AGS (Elab < 15 GeV),

SPS (Elab > 15 GeV) and RHIC (Elab = 44 GeV)
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Fig. 2. Energy dependence of the chemical freeze-out pressure (circles), the effective number of degrees

of freedom (squares), and the generalized speciˇc volume X found by the model of [7]. The analyzed
data were measured at AGS (Elab < 15 GeV), SPS (Elab > 15 GeV) and RHIC (Elab = 44 GeV)

p is the pressure, and ρB is the baryonic charge density. It is remarkable that in all known
examples of equations of state (EOS) describing the QGP-hadron transition, a local minimum
in the energy dependence of the X values of matter described by the shock or generalized
shock model is observed right at the transition to the QGP, independently of whether this
is a ˇrst-order phase transition [15Ä18] or a strong crossover [15, 16]. Therefore, here we
would like to reanalyze the generalized shock adiabat model developed in [15Ä19] in order
to interpret the above irregularities and to verify the other signals of mixed-phase formation
suggested in [16Ä18].

1. GENERALIZED SHOCK ADIABAT MODEL

Such a model was developed in [15Ä19] to extend the compression shock model [20Ä24]
for regions of matter with anomalous thermodynamic properties. Similarly to nonrelativistic
hydrodynamics [26], in the relativistic case, the matter is thermodynamically normal, if the

quantity Σ ≡
(

∂2p

∂X2

)−1

s/ρB

is positive along the Poisson adiabat. Otherwise, for Σ < 0,

the matter has thermodynamically anomalous properties. The sign of Σ deˇnes the type
of allowed simple and shock waves: for Σ > 0 rarefaction simple waves and compression
shocks are stable. In the case of an anomalous medium, compressional simple waves and
rarefaction shocks are stable. If both signs of Σ are possible, then a more detailed investigation
of the possible 	ow patterns is necessary [16, 18]. In fact, all known pure phases have
thermodynamically normal properties, whereas anomalous properties may appear at a ˇrst-
order phase transition [27, 28], at its second-order critical endpoint [26], or for a fast cross-
over [16].

The compression shock model of central nuclear collisions [20Ä24] allows one to determine
the initial conditions for the subsequent hydrodynamic evolution. Such a picture of the
collision process, which neglects the nuclear transparency, can be reasonably well justiˇed at
intermediate collision energies per nucleon 1 � Elab � 20 GeV. Its validity in this energy
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region of collisions was once more demonstrated recently [25] within the two-	uid model.
At laboratory energies per nucleon up to 30 GeV this model can be used for quantitative
estimates [25], while at higher energies it provides a qualitative description only. In the
center-of-mass frame of the two colliding nuclei, the initial moment of the collision can
be considered as a hydrodynamic Riemann problem of an initial discontinuity. For normal
media this kind of initial discontinuity leads to an appearance of two compression shocks that
move in opposite directions toward the vacuum, leaving high-density matter at rest behind the
shock fronts. The thermodynamic parameters X, p, ρB of this compressed matter are related
by the RankineÄHugoniotÄTaub (RHT) adiabat [26] with uncompressed matter in the state
(X0, p0, ρB0),

ρ2
BX2 − ρ2

B0X
2
0 = (p − p0)(X + X0). (1)

This equation follows from the usual hydrodynamic conservation laws of energy, momentum,
and baryonic charge across the shock front. The variable X is convenient, since with its help
the conserved baryonic current can be expressed as j2

B = −(p − p0)/(X − X0), i.e., in the
X − p plane the state existing behind the shock front is given by the intersection point of the
RHT adiabat (1) and the straight line with the slope j2

B known as the Rayleigh line. To solve
Eq. (1), one needs to know the EOS. Within the compression shock model the laboratory
energy per nucleon is

Elab = 2mN

[
(ε + p0)(ε0 + p)
(ε + p)(ε0 + p0)

− 1
]

, (2)

where mN is the mean nucleon mass. A typical example of the shock adiabat is shown
in Fig. 3. As one can see from this ˇgure, the shock adiabat in the pure hadronic and QGP

Fig. 3. The compression RHT adiabat OA2BC (solid curve) of W-kind in the X−p plane. It is calculated

for an EOS with ˇrst-order phase transition discussed in the text. The segments OA1, A1B, and BC

of the adiabat correspond to the hadronic, mixed, and QGP phases, respectively. Shock transitions into
the region of states A2BC are mechanically unstable. The tangent point A2 to the shock adiabat is the

ChapmanÄJouguet point [26]. The dotted and dash-dotted curves show the Poisson adiabats with values
of entropy per baryon speciˇed in the legend
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phases exhibits the typical (concave) behavior of a normal medium, while the mixed phase
(the region A1B) in Fig. 3 has a convex shape, which is typical of matter with anomalous
properties. Until now there is no complete understanding why in a phase-transition or cross-
over region matter exhibits anomalous thermodynamic properties. In pure gaseous or liquid
phases, the interaction between the constituents at short distances is repulsive and, hence,

at high densities the adiabatic compressibility of matter −
(

∂X

∂p

)
s/ρB

usually decreases for

increasing pressure, i.e.,

(
∂2p

∂X2

)−1

s/ρB

= Σ > 0. In the mixed phase there appears another

possibility to compress matter: by converting the less dense phase into the more dense
one. As was found for several EOS with a ˇrst-order phase transition between hadronic gas
and QGP, the phase transformation leads to an increase of the compressibility in the mixed
phase at higher pressures, i.e., to anomalous thermodynamic properties. The hadronic phase
of the aforementioned EOS was described by the Walecka model [29] and by a few of its
more realistic phenomenological generalizations [18, 25, 30]. The appearance of anomalous
thermodynamic properties for a fast crossover can be understood similarly, if one formally
considers the cross-over states as a kind of mixed phase (but without sharp phase boundary),
in which, however, none of the pure phases is able to completely dominate.

From Fig. 3 one sees that the presence of anomalous matter leads to mechanically unstable
parts of the RHT adiabat (segment A2BC in Fig. 3), which include states in the mixed and
QGP phases. This is a model of W-kind [18,25,29] and its RHT adiabat in the instability re-
gion should be replaced by the generalized shock adiabat [16Ä18]. In the region of instability
the shock wave for W-kind models has to be replaced by the following hydrodynamic solu-
tion [16]: a shock between states O and A2 (on the RHT adiabat shown in Fig. 3), followed
by a compressional simple wave (see Fig. 4); at higher energies this solution converts into
two compressional shocks and a compressional simple wave moving between them. A similar
situation occurs in the case of a fast crossover (see Figs. 3 and 4 in [16] for more details).
An additional solution of two compressional shocks following one after the other may appear,
if all transitions to the mixed phase are unstable [16,20].

Shock transitions to mechanically unstable regions are accompanied by a thermodynamic
instability, i.e., the entropy in such transitions decreases, while collision energy grows [16,
27,28]. At the same time, the mechanical stability condition of the generalized shock adiabat
always leads to thermodynamic stability of its 	ows. Or, in other words, along the correctly
constructed generalized shock adiabat the entropy cannot decrease [19]. Among the possible

Fig. 4. Sketch of a collision of two nuclei (grey

areas), where the generalized shock adiabat states

are above the ChapmanÄJouguet point A2. Two
shocks between the states ε0 → εA2 are followed

by compressional simple waves. The dashed ar-

rows show the direction of shock propagation
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solutions mentioned above an important role is played by the combination of a shock wave
between the states O and A2, followed by a simple wave starting in the state A2 and continuing
to states located at the boundary between the mixed-phase and the QGP [16]. For such a
solution the entropy is conserved, i.e., the ratio of entropy density per baryon s/ρB = const,
because the whole entropy production is generated by a shock OA2 to the ChapmanÄJouguet
point A2 (see Fig. 3). This means that by increasing the collision energy one generates more
compressed states, which, however, have the same value of s/ρB.

Based on this solution, a signal for the mixed-phase formation was suggested, provided
that this instability of a W-kind model exists [16Ä18]. The important physical consequence of
such an instability is a plateau in the collision-energy dependence of the total number of pions
per baryon produced in a nuclear collision, i.e., ρtot

π /ρB(Elab) � const [17,18], provided by
the entropy conservation during the subsequent expansion of the hydrodynamic 	ow formed
by the generalized shock adiabat. Since the total pion multiplicity consists of thermal pions
and the ones which appear from decays of hadronic resonances, in case of the RHT adiabat
instability, the number of thermal pions per baryon ρth

π /ρB should also demonstrate a plateau
or a plateau-like behavior with a small negative slope as a function of collision energy.

Note, that the proposal of possible appearances of plateaus in the entropy per baryon and
in the total pion number per baryon as functions of collision energy was strongly criticized
in the literature. In Fig. 5, one can see all three plateaus at the laboratory energies Elab �
6.9−11.6 GeV, i.e., exactly where the other irregularities, depicted in Figs. 1 and 2, occur.
All quantities shown in Figs. 1, 2, and 5 were found at chemical FO within the most realistic
model of the hadron resonance gas with multicomponent hard-core repulsion [7], which not
only successfully describes 111 independent hadron multiplicity ratios measured for center-of-

Fig. 5. Energy dependence of the entropy per baryon (circles), of the thermal pion multiplicity per

baryon (squares), and of the total pion multiplicity per baryon (triangles) found at the chemical freeze-
out within the realistic version of the hadron resonance gas model [7]. The horizontal bars are found

by minimizing χ2/dof (see the text). The solid curve corresponds to the RHT adiabat shown in Fig. 3
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mass energies
√

sNN = 2.7−200 GeV, but also correctly reproduces the energy dependence
of the Strangeness Horn with χ2/dof � 7.5/14.

It is, of course, possible that the anomalous properties of the mixed phase do not generate
the mechanical instabilities for the shock transitions to this phase [16], like it was found for
the Z-kind hadronic EOS [30]. Nevertheless, it was argued that even in the latter case a
plateau-like structure in the entropy per baryon, and, hence, in the thermal pion multiplicity
per baryon, should also be seen [16Ä18].

Now we are at a position to determine the parameters (individual heights for the same
width) of the plateaus in the ratios s/ρB , ρth

π /ρB and ρtot
π /ρB shown in Fig. 5. We investi-

gated a few different schemes, but came to the conclusion that a 3-parameter ˇt is the most
reliable and simple one. Since we are searching for a plateau, it is clear that its height RA

should be the same for a given quantity A ∈ {s/ρB; ρth
π /ρB; ρtot

π /ρB}. The width of all
plateaus in the collision energy should also be the same, since they are generated by the same
physical mechanism. Let i0 denote the beginning of plateau, while M denotes its width.
Then, one has to minimize

χ2/dof =
1

3M − 3

∑
A

i0+M−1∑
i=i0

(
RA − Ai

δAi

)2

(3)

for all possible values of i0 and M > 1. Here the subscript i counts the data points Ai to be
described, whereas δAi denotes the error of the corresponding quantity Ai. We assume that
the plateaus are correlated to each other, if χ2/dof is essentially smaller than 1. Also, from
the practical point of view, it is necessary to ˇnd the set of maximally correlated plateaus for
future experiments. The height of each plateau RA is found by minimizing χ2/dof in (3)
with respect to RA and one gets

RA =
i0+M−1∑

i=i0

Ai

(δAi)
2

/i0+M−1∑
i=i0

1
(δAi)

2 . (4)

As one can see from the Table below, minimal values of χ2/dof < 0.2 are reached for M = 2,
but these are not the widest plateaus. There exist two sets for M = 3 with χ2/dof � 0.53
for the low-energy plateaus (at Elab � 6.9−11.6 GeV) and with χ2/dof � 0.34 for the

Results of the 3-parameter ˇt

M i0 Rs/ρB
Rρth

π /ρB
Rρtot

π /ρB
χ2/dof

Low-energy minimum

2 3 11.12988 0.52037 0.85683 0.17811

3 3 11.31482 0.46128 0.89174 0.53144
4 2 10.55597 0.43340 0.72523 1.64913
5 2 11.53637 0.47009 0.84800 4.45466

High-energy minimum

2 8 19.80518 0.88229 2.20373 0.12751
3 7 18.77659 0.83508 2.05780 0.34045
4 6 17.82325 0.77920 1.87732 0.87105
5 5 16.26105 0.64800 1.62094 3.72057



358 Bugaev K. A. et al.

high-energy plateaus (at Elab � 30−40 GeV). Precisely these sets are depicted in Fig. 5, since
we believe that the high-energy set of Elab � 20−40 GeV with the width M = 4 should not
be taken into account, because its value of χ2/dof � 0.87 is too close to 1 and, therefore,
such plateaus are not strongly correlated even for these huge error bars.

2. NEW SIGNAL OF THE QGP FORMATION

Here we suggest a new signal indicating a boundary between the mixed phase and the QGP,
which also signiˇes the existence of mechanical instabilities inside the mixed phase. This is
an appearance of a local minimum of the generalized speciˇc volume X at chemical FO as a
function of the collision energy (see Fig. 2). Note, that all stable RHT adiabats of Z-kind and
all unstable RHT adiabats of W-kind and the corresponding generalized shock adiabats with
the QGP EOS of the MIT-Bag model type [31] studied in [16Ä18, 25] demonstrate exactly
the same behavior. The physical origin for such a behavior is that for an increase in collision
energy the entropy per baryon and the temperature of the formed QGP (being a normal
medium) increase as well, while the baryonic density and the baryonic chemical potential are
steadily decreasing. Hence, in the QGP phase the variable X ≡ (Ts/ρB + μB)/ρB grows, if
the collision energy increases. Intuitively, such a dependence seems to be true for other QGP
EOS, if they correspond to a normal medium. On the other hand, the behavior of the variable
X inside the mixed phase with anomalous properties is opposite and it does not depend on
the stability or instability of the shock transitions to this region [16Ä18]. On the basis of
these arguments, one can understand the reason why the boundary of the mixed phase and
QGP corresponds to a local minimum of the X variable along the RHT (shown in Fig. 3)
or generalized shock adiabat and why it is also a minimum of X as a function of collision
energy [16Ä18,25].

In case of unstable shock transitions to the mixed phase, the unstable part of the
mixed phase (segment A2B in Fig. 3) should be replaced by the Poisson adiabat pass-
ing through the point A2 (the dotted curve shown in Fig. 3). Consequently, if the matter
formed in a collision expands isentropically after the shock OA2 disappears, then it can
be shown that for the chemical FO pattern depicted in Figs. 1 and 2 the minimum of the
variable X of the initial state corresponds to the minimum of this variable at chemical
FO, i.e., min {X(Elab)} corresponds to min {XFO(Elab)}. Indeed, the ˇnal states of the
isentropic expansion belong to the Poisson adiabat, at which s/ρB = sFOV FO/(2A) =
const. Here the entropy density sFO and the system volume V FO are taken at chemi-
cal FO, while the total number of baryons in A + A collision is 2A. At chemical FO
temperatures T below 150 MeV, the hadronic EOS can be safely represented as a mix-
ture of ideal gases of massive pions and nucleons, i.e., its pressure p � T (ρB + ρπ)
and energy density ε � (mN + (3/2)T )ρB + (mπ + (3/2)T )ρπ can be represented via
the density of nucleons ρB and the density of pions ρπ (here mN (mπ) is the nucleon
(pion) mass). With the help of this EOS the variable X at chemical FO can be cast as
XFO � [mN + mπ + (5/2)T (1 + ρπ/ρB)]V FO/(2A). From Fig. 5 one sees that constant
values of s/ρB in the range of Elab = 6.9−11.7 GeV correspond to a nearly constant ratio
ρπ/ρB � 0.5 and, hence, one can write XFO � [mN + mπ + 3.75 T ]V FO/(2A) for these
energies. Since for these energies the entropy density changes from 0.3 to 1.944 fm−3,
while the chemical FO temperature changes from 84 to 127 MeV, it is clear that one
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can approximately write XFO � [mN + mπ + 358 MeV]V FO/(2A) and, hence, the value
XFOsFO � [1536 MeV]V FOsFO/(2A) = const. A direct numerical check shows that for
the chemical FO data belonging to the laboratory energy range Elab = 6.9−11.7 GeV, one
obtains XFOsFO � 16.9; 19.3; 23.1, which means that such a relation is valid with the relative
deviations −12% and +20%. Note, that the relation XFOsFO/[mN + mπ + 3.75 T ] � const
gives us the values 15; 16.5; 17.9, i.e., it is fulˇlled with relative errors −9.1% and +8.5%
in this energy range and these estimates validate our EOS usage. Using these arguments, we
conclude that with reasonable accuracy one can establish the relation XFO ∼ V FO ∼ 1/sFO

for the ˇnal states, which belong to the Poisson adiabat and, therefore, the growth of entropy
density (see Fig. 1) and the decrease of the variable X , shown in Fig. 2, are directly related
to each other.

The same treatment can be applied to higher energies. In this case, one has to write
XFO � [mN + mπ + (5/2)T FO(1 + ρFO

π /ρFO
B )]sFO/ρFO

B /sFO and account for the fact that
the ratios sFO/ρFO

B and ρFO
π /ρFO

B are increasing with the collision energy, while the chemical
FO temperature and entropy density are almost constant for Elab > 11.7 GeV (see Fig. 1).
Hence, in this case, one can write XFO ∼ sFO/ρFO

B ∼ sinit/ρinit
B , where we used the entropy

conservation sinit/ρinit
B = sFO/ρFO

B during the expansion of the matter formed after the
disappearance of the shock wave (initial matter). Therefore, for the laboratory energies above
11.7 GeV the variable XFO should increase with the collision energy, and this is a re	ection
of the growth of the initial values of the X variable, when the generalized shock adiabat goes
inside the QGP.

The same conclusion can be obtained from the fact that the Poisson adiabats with the
different s/ρB values cannot intersect each other. Therefore, the generalized shock adiabat,
which must replace the unstable RHT adiabat (like the one shown in Fig. 3), would generate
the ˇeld of nonintersecting Poisson adiabats in the X − p plane, since along the mechanically
stable hydrodynamic solutions the entropy cannot decrease. By construction at given X
the Poisson adiabat with higher value of s/ρB has higher pressure p. Then, applying the
chemical FO criterion p = const, which within the error bars is clearly seen in Fig. 2,
to such a ˇeld of nonintersecting Poisson adiabats in the X − p plane, one observes that
the higher values of s/ρB correspond to larger values of the variable XFO along the line
p = const.

Accounting for the above estimates, we conclude that the local minimum of the XFO

variable is related to the minimum of the variable X on the generalized shock adiabat existing
at the boundary between the mixed phase and QGP. Moreover, the above estimates show that
the minimum of the XFO(Elab) function corresponds to the minimum of the chemical freeze-
out volume V FO(Elab), reported in [13] and reanalyzed recently in [6]. Thus, we ˇnd that
the minimum of V FO(Elab) is generated by the unstable part of the RHT adiabat to the
boundary of mixed and QGP phases, i.e., it is another signal of the QGP formation. It
should be emphasized that the high accuracy of the recently developed models for chemical
freeze-out [6Ä8] allows us to safely detect this one or comparable signals, if the analyzed
experimental data are sufˇciently accurate.

Note, that these conclusions were also veriˇed numerically for the shock adiabat shown
in Figs. 3 and 5 and, hence, it is appropriate to present here the employed EOS. The hadron
gas pressure used in the present work accounts for the mesonic and the (anti)baryonic states,
which are described by the masses mM , mB and by the temperature-dependent numbers of
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degrees of freedom [32]:

pH =
[
CBT AB exp

(
−mB

T

)
2 cosh

( μ

T

)
+ CMT AM exp

(
−mM

T

)]
exp

(
−pHVH

T

)
. (5)

This EOS accounts for the short-range repulsion introduced via the excluded volume VH =
(4/3)πR3

H (with RH = 0.3 fm) taken to be equal for all hadrons. With the parameters
mM = 8 MeV, mB = 800.5 MeV and

AM = 4.95, CM = 6.90 · 10−9 MeV1−AM · fm−3,
(6)

AB = 6.087, CB = 2.564 · 10−9 MeV1−AB · fm−3,

such a model not only represents the mass-integrated spectrum of all hadrons, but also it
rather accurately reproduces the chemical FO densities of mesons ρM and baryons ρB and
the ratios s/ρB and s/ρM for the chemical FO temperatures below 155 MeV [32]. The
parameters of the center of the shock adiabat were ˇxed as: p0 = 0, ρ0 = 0.159 fm−3 and
ε0 = 126.5 MeV · fm−3.

The QGP EOS is motivated by the MIT-Bag model [31]:

pQ = A0T
4 + A2T

2μ2 + A4μ
4 − B, (7)

where the constants A0 � 2.53 · 10−5 MeV−3 · fm−3, A2 � 1.51 · 10−6 MeV−3 · fm−3,
A4 � 1.001 · 10−9 MeV−3 · fm−3, and B � 9488 MeV · fm−3 were found by ˇtting the
s/ρB chemical FO data for Elab < 50 GeV with s/ρB values along the RHT adiabat and by
keeping the pseudocritical temperature value at zero baryonic density close to 150 MeV, which
is known from lattice QCD [33]. The phase diagram was found from the Gibbs criterion,
pH(T, μB) = pQ(T, μB). The resulting RHT adiabat describes the s/ρB chemical FO data
well (see Fig. 5).

Note, that the found values of the coefˇcients A0, A2 and A4 differ from the values AL
0 , AL

2

and AL
4 obtained within the lattice QCD [33] at vanishing baryonic chemical potentials, but

this difference can be attributed to the T and μB dependencies of the bag pressure

Beff(T, μB) = B − (A0 − AL
0 )T 4 − (A2 − AL

2 )T 2μ2 − (A4 − AL
4 )μ4, (8)

which identically generates the QGP pressure (7) pQ = AL
0 T 4 + AL

2 T 2μ2 + AL
4 μ4 −Beff , but

with the coefˇcients AL
0 , AL

2 and AL
4 . The obtained result on Beff(T, μB) is in line with the

requirements of the ˇnite width model [34,35] of quark gluon bags.

3. DISCUSSION OF THE RESULTS

We have presented remarkable irregularities at chemical FO elucidated via a high-quality
ˇt of experimental particle ratios obtained by the advanced version of the hadron resonance
gas model. The achieved value of ˇt quality χ2/dof � 1.16 gives us a high conˇdence
in our ˇndings. Among these irregularities we observed a dramatic jump of the effective
number of degrees of freedom and a local minimum of the generalized speciˇc volume
XFO(

√
sNN) at center-of-mass collision energies

√
sNN = 4.3−4.9 GeV. Also, at chem-

ical FO we found plateaus in the collision-energy dependence of the entropy per baryon,
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of the total and of the thermal numbers of pions per baryon, which were predicted long
ago [16Ä18]. We discussed the generalized shock adiabat model for low-energy collisions
and argued that the found plateaus at

√
sNN = 3.8−4.9 GeV (Elab � 6.9−11.6 GeV)

and the minimum of XFO(
√

sNN) are generated by the RHT adiabat instabilities existing
at the boundary between the mixed phase and QGP. In fact, the narrow collision energy
range of about 1 GeV of the found plateaus trivially explains the reason of why it was so
hard to locate the mixed phase. It was due to the lack of experimental data in this energy
range.

The numerical simulations of the RHT adiabat for the realistic EOS of the hadronic phase
allowed us to reproduce the s/ρB plateau and thus, for the ˇrst time, to ˇx the parameters of
the QGP EOS directly from the chemical FO data. Also, at chemical FO we found a second
set of plateaus at Elab � 30−40 GeV, which in our model, however, does not correspond to
a phase transition or to the discussed instabilities. Of course, it is possible that, the second set
of plateaus corresponds to other phase transition, if the endpoint of the QCD phase diagram
is the tricritical one. However, to make more deˇnite conclusions about the found plateaus
at laboratory energy 30−40 GeV, we need more precise data measured with Elab steps of
about 100Ä200 MeV. Hopefully, the experiments planned at JINRÄNICA and GSIÄFAIR will
provide us with such data.
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