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RADIOACTIVITY. CASE: RARE EVENTS

V. B. Zlokazov 1

Joint Institute for Nuclear Research, Dubna

The paper discusses further development of the approach published in ©Comp. Phys.
Commun.ª (2014).

Low statistics means a little bit of information about the object of interest, so that a more or less
exact parameter estimation and reliable statistical tests can be only a matter of chance, especially in the
case of the exponential distribution, which is more intolerant to small samples (1Ä4 events) than the
majority of other important distributions.

Therefore, the problem of optimization of the statistical analysis is especially actual for the expo-
nentially distributed data, and the paper suggests, for both the parameter (mean) estimation and the
statistical tests, a concept of a conˇdence interval, based on the order statistics, which, on the one hand,
provides its clear and natural interpretation, and, on the other hand, is an optimum compromise between
the criteria: ©the shortest interval lengthª Ä ©the largest size of the probabilityª.

‚ · ¡μÉ¥ μ¡¸Ê¦¤ ¥É¸Ö ¤ ²Ó´¥°Ï¥¥ · §¢¨É¨¥ ¶μ¤Ìμ¤ , μ¶Ê¡²¨±μ¢ ´´μ£μ ¢ ®Comp. Phys.
Commun.¯ (2014).

Œ ² Ö ¸É É¨¸É¨±  μ§´ Î ¥É ³ ²μ¥ ±μ²¨Î¥¸É¢μ ¨´Ëμ·³ Í¨¨ μ¡ μ¡Ñ¥±É¥ ¨´É¥·¥¸ , É ± ÎÉμ ¡μ²¥¥
¨²¨ ³¥´¥¥ ÉμÎ´μ¥ μÍ¥´¨¢ ´¨¥ ¶ · ³¥É·μ¢ ¨ ´ ¤¥¦´μ¥ ¸É É¨¸É¨Î¥¸±μ¥ É¥¸É¨·μ¢ ´¨¥ ³μ£ÊÉ ¡ÒÉÓ
²¨ÏÓ ¤¥²μ³ ¸²ÊÎ Ö, μ¸μ¡¥´´μ ¤²Ö Ô±¸¶μ´¥´Í¨ ²Ó´μ£μ · ¸¶·¥¤¥²¥´¨Ö, ±μÉμ·μ¥ ¡μ²¥¥ ´¥É¥·¶¨³μ
± ³ ²Ò³ ¢Ò¡μ·± ³ (1Ä4 ¸μ¡ÒÉ¨°), Î¥³ ¡μ²ÓÏ¨´¸É¢μ ¤·Ê£¨Ì ¢ ¦´ÒÌ · ¸¶·¥¤¥²¥´¨°.

�μÔÉμ³Ê ¶·μ¡²¥³  μ¶É¨³¨§ Í¨¨ ¸É É¨¸É¨Î¥¸±μ£μ  ´ ²¨§  μ¸μ¡¥´´μ  ±ÉÊ ²Ó´  ¤²Ö Ô±¸¶μ´¥´-
Í¨ ²Ó´μ · ¸¶·¥¤¥²¥´´ÒÌ ¤ ´´ÒÌ, ¨ ¢ · ¡μÉ¥ ¶·¥¤² £ ¥É¸Ö ¤²Ö μÍ¥´±¨ ¶ · ³¥É·μ¢ ¨ ¶·μ¢¥·±¨
£¨¶μÉ¥§ ¶μ´ÖÉ¨¥ ¤μ¢¥·¨É¥²Ó´μ£μ ¨´É¥·¢ ² , μ¸´μ¢ ´´μ£μ ´  ¶μ·Ö¤±μ¢ÒÌ ¸É É¨¸É¨± Ì, ±μÉμ·Ò°,
¸ μ¤´μ° ¸Éμ·μ´Ò, μ¡¥¸¶¥Î¨¢ ¥É ¥£μ Ö¸´ÊÕ ¨ ¥¸É¥¸É¢¥´´ÊÕ ¨´É¥·¶·¥É Í¨Õ,   ¸ ¤·Ê£μ° ¸Éμ·μ´Ò,
μ¶É¨³ ²Ó´Ò° ±μ³¶·μ³¨¸¸ ³¥¦¤Ê ±·¨É¥·¨Ö³¨ ®±· ÉÎ °Ï Ö ¤²¨´  ¨´É¥·¢ ² ¯ Ä ®³ ±¸¨³ ²Ó´Ò° · §-
³¥· ¢¥·μÖÉ´μ¸É¨¯.

PACS: 07.05.-t; 25.70.-z

INTRODUCTION

This paper is a further development of the approach published in ©Comp. Phys.
Commun.ª [1].

An exponential distribution (ED) plays a very conspicuous role in the experiments dealing
with the radioactivity. Among them the most advanced ones, e.g., such as the synthesis of
superheavy elements or the like ones, are characterized by a very small output, so that the
information about the physical meaning of the observed process should be derived only from
these scarce data.

1E-mail: zlokazov@jinr.ru
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Generally, if the observed data contain a little bit of information, there are only three
means to overcome this defect:

• large statistics of the data;
• superefˇcient estimation. It is the case when the accuracy of the unbiased estimate of

the mean, based on m events, depends not on 1/m (as in usual efˇcient case), but on 1/m2.
The former means: 4 times more events Å 2 times better the accuracy. The latter: 2 times
more events Å 2 times better the accuracy Å this is very proˇtable for the low statistics;

• a lucky chance Å if the registered data are close (by accident) to the parameter of
interest (usually the mean) of the distribution.

The ˇrst point is excluded from our study; the second one applies only to the uniform
distribution. Thus, only the third one remains at our disposal. Let us call a distribution
tolerant to the low statistics, if

1) it has a ˇnite variance;
2) it has a property: any event falls into a Δ long vicinity of the mean with a greater

probability than into any other interval of the Δ size (Δ is an arbitrary value).

1. THE MAIN DISTRIBUTIONS, WHICH TOLERATE THE LOW STATISTICS

Let the expectation of a random quantity be the parameter of interest. Then, the following
distributions tolerate the low statistics.

• The normal distribution. Its probability density function is

p(t) =
1√
2πσ

exp
(
− (t − c)2

2σ2

)
. (1)

Here the center c is the parameter of interest. For any time interval of a however small

length δ, containing c, we see that the probability
c+δ∫
c−δ

p(t) dt that our event falls into this

interval is the greatest. It means that for experiments with low statistics the normal distribution
is rather favorable Å we have here the greatest chances that the events will be closely spread
around the mean c, even if there are only few of them.

This gives us a possibility to deˇne the low statistics formally. Referring to the widely
spread semi-empiric opinion that in practice the average of 5 and more random values has
already approximately the normal distribution, we can suggest that the data have a low
statistics if it consists of not more than 4 items.

• The Poisson distribution. It is a distribution of a discrete random integer-valued
variable ξ:

P (ξ = n) =
an

n!
exp (−a), (2)

where a (the parameter of interest) is both the mean and the variance.
The value nx, where (2) is maximum, is close to a or, rather, to its nearest integer value.
So, we see that (2) is also rather tolerant to the low statistics.
To a certain extent, the above deˇnition of the tolerance to the low statistics is qualitative.

One can invent densities, which formally satisfy it, but intuitively cannot be considered as
tolerant, and, vice versa, one can invent such densities, which formally do not satisfy the
above deˇnition, but intuitively can be considered as tolerant. Examples are as follows:
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1.

f(x) =

⎧⎪⎨
⎪⎩

sin2 (2π · x/c) if x ∈ [c · k, c · (k + 1)];

sin2 (2π · x/c)
(1 + ε)

otherwise,

where f(x) is deˇned in an interval of the x-axis of the length c · (2k + 1), and ε is a small
positive number.

2.

f(x) =
{

p if x ∈ [a, a + ε];
0 otherwise,

where f(x) is deˇned in an interval of the x-axis [0, L], a is an inner point of this interval,
p is a constant, and ε is a small positive number, so that a + ε is much smaller than L.

However, the above deˇnition conveys the idea of the tolerance to the low statistics, and
gives reliable examples of tolerant distributions (the Poisson and Gauss ones), so that if a
distribution is close to either of them in the sense of the C-metric, it can be counted tolerant.

2. THE EXPONENTIAL DISTRIBUTION

Unfortunately, the absolute majority of other widely-used distributions do not favor the
low statistics, and among them the most striking example of the contrast between ©the most
probableª and ©the most expectedª is given by the exponential probability distribution.

The exponential distribution (ED(T )) for the quantity ξ with the parameter T is deˇned
as follows:

Fξ(t, T ) =

⎧⎨
⎩

1 − exp
(
−t

T

)
if t � 0;

0 elsewhere.
(3)

Here t is the time. In the applications such a form of the T parameter is preferable, since in
this case T (the decay constant) and t are measured in the same direct time units.

We have here the distribution density p(t) = exp (−t/T )/T , which is nonzero valued
in [0,∞) and T as the mean and T 2 as the variance.

At t = 0, the density p(t) has the maximum and it means that the decays, however close to
t = 0, are the most probable ones. In [1], it has been shown that while observing a radioactive
decay, we have almost thrice more chances to observe a value close to 0 than to T .

It does not play an essential role if the statistics is large, but it may be of crucial importance
if we have only few events.

A radioactive process looks like this Å an avalanche of events at the beginning, and then
the succession of a diminishing geometric progression of the rest. This is a contrast to the
normal distribution.

3. THE GAMMA DISTRIBUTION

For an exponential random quantity ξ there is a distribution, which is closely connected
with it. It is the one with the following density function:

g(t, m, T ) =

⎧⎨
⎩

tm−1

T m(m − 1)!
exp

(
−t

T

)
for t � 0;

0 otherwise,
(4)



392 Zlokazov V. B.

where m is positive integer, and T is positive real. The mean of the distribution (4) is mT
and the variance is mT 2.

For m = 1 the function (4) is the usual exponential probability distribution.
Let a sample of random values t1, t2, . . . , tm of ξ be given, and consider the following

quantities:

S =
m∑

i=1

ti, Sm =
S

m
. (5)

The random quantity S has the (4) distribution (see, e.g., [2]). The density of the Sm

distribution is m · g(mt, m, T ), and its mean and the variance are equal to T and to T 2/m,
respectively. The maximum of the density (let it be tx) is reached at the root of the equation

m

[
(m − 1)(mt)m−2

T m(m − 1)!
− (mt)m−1

T m+1(m − 1)!

]
exp

(
−mt

T

)
= 0,

from which we obtain tx = (m − 1)T/m.
For the case of low statistics (m = 1, 2, 3, 4) we see that this maximum is rather far from

the mean T . For instance, if m = 2, the distances between 0 and tx, and between tx and T ,
are equal to T/2, i.e., for m = 2 the half-sum (t1 + t2)/2 has equal chances to be close to 0
as well as to T .

If m = 3, then the (t1 + t2 + t3)/3 has two chances against one that it will be closer to T
than to 0; and so on: m − 1 chances for ©T ª against one chance for ©zeroª. While m → ∞,
according to the Central Limit Theorem, the distribution (4) tends to the normal one with
the center T .

Summarizing, we can say that the gamma distribution is not tolerant to the extremely low
statistics (m = 1, 2, 3, 4).

4. THE PROBLEMS

Given a random sample S = ti, i = 1, 2, . . . , m of size m from an ED (the times of a
radioactive decay), we can specify the following tasks of their analysis:

1) on the basis of S estimate the T parameter and its accuracy;
2) for the given T test the hypotheses:
a) does each of ti, ti ∈ S correspond to the model F (t, T )?
b) has the whole set S the distribution F (t, T )?
We shall start with the second problem, because for the rare events one can get more

reliable results for the statistical tests rather than for the parameter estimates.
To make a decision on the correspondence of the set S to F (t, T ), it is necessary to

build a CI Å a conˇdence interval (in the decision-making called also critical region); it
is an interval [a, b] on the t-axis, into which the tested values of our random variable ti
(case (a)) or some function s of the set S (statistic) (case (b)) fall with a certain conˇdence
probability (Pc); if the event ti or the statistic s fall into [a, b], then they do not contradict the
tested hypothesis that the distribution is really F (t, T ) (but, of course, do not yet conˇrm it).

As a rule, use is made of a two-sided CI [M ± σ], where M is the mean value and σ is
the square root of the variance.
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For the Gaussian distribution this corresponds to Pc ≈ 0.68, and for such a test the ratio
of the ©proª and ©contraª chances is equal to approximately two.

However, in our case, one-sided CIs are also of great interest [1], when, e.g., m = 1, i.e.,
for the problem 2 (a). These CIs have the form [0, 2T ], where T is the tested value of the
ED parameter, since in case of the ED events, which are close to 0, occur with the maximum
probability, and, of course, 0 should be the lowest bound of such a CI.

Remark. The lowest CI bound in case of hypothesis testing should not be confused with
the lowest CI bound in parameter estimation. In the latter case, a CI [Tmin, Tmax] describes
with a certain conˇdence probability the most probable values of the T parameter, and, of
course, Tmin is always greater than 0.

In case of hypothesis testing, a CI [tmin, tmax] describes with a certain conˇdence prob-
ability the most probable t values for the tested T parameter, and, therefore, tmin can be
equal to 0.

A two-sided CI for the testing hypotheses is appropriate, if 0 is not the value of the
maximum probability density.

5. OPTIMIZATION OF THE CONFIDENCE INTERVAL

For a given F (t, T ) we shall use a concept of an optimal conˇdence interval [a, b] (OCI)
described in [1]. Such an OCI should have minimal difference b − a, and, at the same time,
the probability of the events to belong to the interval [a, b] ©pro chancesª should be maximum;
since these conditions contradict each other, an OCI is one of the two compromises:

Å for a given length b − a ˇnd an interval with the best ratio ©pro/contraª;
Å for a given ratio ©pro/contraª ˇnd an interval of the shortest length b − a.
Apart from this, the physical meaning of the interval [a, b] and its bounds a and b should

be clear and natural.
For an exponential distribution F (t, T ) and m = 1 one can propose a semi-empiric

approach, which would allow us to build such a one-sided OCI (i.e., [0, 2T ]) with a minimum
of arbitrary assumptions about the data [1].

Let us see what can be done for the case of two-sided CIs (m > 1). Let σ be the square
root of the Sm variance. Then, the usual two-sided CI is [T − σ, T + σ]. It is a ˇxed
compromise between the size of the CI and the area of the total probability covering it.

However, it is not clear how this probability is distributed within the CI Å generally this
CI does not re	ect the structure of the ED, in particular, its asymmetry. Thus, its physical
meaning is often not clear. Therefore, it would seem desirable to elaborate a scheme of a CI,
which would keep the advantages of the usual CI and be free of its drawbacks.

6. ORDER STATISTICS

For this reason, let us make use of the so-called order statistics. The method based on
them is, in our case of an ED, especially convenient, because they can be represented as
easily integrable analytical functions.

Let the items ti of a sample S be arranged in an increasing order. Following [2], we
deˇne the following order statistics:
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1) denote the minimal value in the sample S as u1; it is a random quantity with the
probability density

g1(u1) =
m

T
exp

(
−m · u1

T

)
for u1 � 0;

2) and denote the maximum value in the sample S as um; it is a random quantity with
the probability density

gm(um) =
m

T
exp

(
−um

T

)(
1 − exp

(
−um

T

))m−1

for um � 0.

Omitting integrations, which can be easily reconstructed, we get the expectations Êu1

and Êum for the cases of low statistics, i.e., for m = 2, 3, 4 (Table 1).
To compare a UCI Å usual conˇdence interval [T − √

mT, T +
√

mT ] and an OCI
[Tmin, Tmax], let us consider the following two tables (Tables 2 and 3) for the different T ;
one can see that the results weakly depend on the parameter T (certainly, excepting the
interval length).

Here Prob ©proª is the probability to accept the hypothesis, if the tested value falls
into the CI.

The analysis of these tables allows us to make such conclusions.
• The OCIs really have a special psychological advantage Å they have the most clear

interpretation as bounds between the most typical minimal and the most typical maximum
values of the random quantity.

• For m = 2 the probability covering the OCI may seem to be too small; in this case,
it is more appropriate to solve the following optimization problem: for the ˇxed probability
(e.g., 0.68) ˇnd the shortest CI.

Table 1. Expectations of the order statistics

Parameter m = 2 m = 3 m = 4

Tmin T/2 T/3 T/4

Tmax (3/2)T (11/6)T (25/12)T

Length T (3/2)T (11/6)T

Table 2. T = 20

Names OCI (m = 2) OCI3 OCI4 UCI (m = 2) UCI3 UCI4

Prob ©proª 0.55 0.83 0.95 0.74 0.75 0.71

Ratio ©pro/contraª 1.2 5.0 19.9 2.9 2.9 2.5

CI length T 1.5T 1.835T 1.41T 1.41T 1.41T

Table 3. T = 80

Names OCI (m = 2) OCI3 OCI4 UCI (m = 2) UCI3 UCI4

Prob ©proª 0.54 0.83 0.95 0.75 0.72 0.71

Ratio ©pro/contraª 1.2 5.0 18.4 2.9 2.5 2.4

CI length T 1.5T 1.83T 1.41T 1.41T 1.41T
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• For m = 3, 4 the optimization is: among the intervals with the lengths (3/2)T and
(11/6)T , respectively, ˇnd those having the greatest covering probability.

In all the cases, to keep the clearness, they should have either a as the 1st order statistics
or b as the maximum order one, or both should be those of OCIs (see the example in Sec. 10).

7. PARAMETER ESTIMATION

In the case of an ED and data with low statistics, this problem requires a special consider-
ation. The usually used maximum likelihood estimator (MLE) is the average T̂ = Sm given
by (5), which, for the case of one event, is the data t1 itself.

• Case of one event. The MLE is based on an assumption that on the average the data
likelihood is maximum, that here turns out to be false. In the case of one event t1, it is more
reasonable to consider t1 as an estimate of the lower bound for T , the argumentation being
as follows.

The probability Pk of an inequality t1 < kT is equal to Pk = 1 − exp (−k); here k
is an arbitrary number. We can try different estimates of T , which still guarantee that the
inequality holds. The minimal of them is obviously T̂ = t1/k. It is the estimate of the lower
bound of T with the conˇdence probability Pk, which depends on k. For k = 2 P2

∼= 0.865;
For k = 1 P1

∼= 0.63.
• Case of m events, m = 2, 3, 4. The estimate of T is Sm (the average), and it is

appropriate to take as bounds the same OCI, based on order statistics [Tmin, Tmax], for the
same reasons as in case of the hypothesis testing. It provides a better compromise between
the CI length and the probability covering it than the UCI does.

8. HYPOTHESIS DISCRIMINATION

Hypotheses testing gives us an answer to a question: Can the tested value originate from
the tested distribution? But it gives no answer to the question: Does the tested value originate
from the tested distribution?

Such answers can be obtained using the techniques of the hypothesis discrimination. In our
case, we can proceed in the following way.

In principle, the problem can be solved by testing a ˇnite number of hypotheses exhausting
all the realistic interpretations of our data (if it is possible) and selecting only one, which
does not contradict the data, while all the other do. Certainly, in our case of low statistics, a
more or less reliable discrimination can be made of not more than two hypotheses.

So, we have the two hypotheses Å H0 : that T = T0, and HA : that T = TA, let TA > T0.
• Case of one ti. We shall use the OCIs for one event described in [1]. Events from

the interval [0, 2T0] do not contradict the both hypotheses; events from [2T0, 2TA] contradict
only H0, and events from [2TA,∞] contradict the both H0 and HA. The critical region is
the interval Cr = [2T0, 2TA]. If t1 ∈ Cr, we accept HA and reject H0. The Type I error

(to reject the true hypothesis) is equal to
2TA∫
2T0

exp (−t/T0)/T0 dt, if H0 is true, and the Type II

error (to accept the false one) is the same.
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• Case of several ti. The average Sm (5) has the m · g(mt, m, T ) distribution, where
g(t, m, T ) is the gamma distribution (4). Taking the order statistics intervals [T0min, T0max]
and [TA min, TA max] as OCIs, we can build the critical region for the discrimination of H0

and HA. For the simplicity reason suppose that T0max > TA min.
Let us use the following notation:

a1 = T0min, a2 = T0max, b1 = TA min, b2 = TA max.

We can divide the whole t-axis into the following intervals:

R1 = [0, a1], R2 = [a1, b1], R3 = [b1, a2], R4 = [a2, b2], R5 = [b2,∞],

and set up the following rules for the decision-making:
1) if Sm falls into R1 or R5, the data contradict the both hypotheses;
2) if Sm falls into R2, H0 is accepted, and HA is rejected;
3) if Sm falls into R4, H0 is rejected, and HA is accepted;
4) if Sm falls into R3, the hypotheses cannot be distinguished (for this statistical level),

both the hypotheses can be accepted.
The Figure can illustrate this case.
The Type I error is

∫
TA min,TA max

exp (−t/T0)/T0 dt and the Type II error is

T0max∫
T0min

exp (−t/TA)/TA dt.

From Table 1 we can get the values of the order statistics for m = 3,

T0min =
T0

3
, T0max =

11
6

T0, TA min =
TA

3
, TA max =

11
6

TA.

Calculating the integrals of the Type I and II errors, we shall get: TI error ≈ 0.488 and TII

error ≈ 0.447. Chances to discriminate the hypotheses for m = 3 and the ratio TA/T0 = 2,
given by these probabilities, are not too large. However, if TA/T0 = 3, the corresponding
probabilities are 0.364, 0.352 and the chances increase, even if m remains the same.

We can build a function f(R = TA/T0), which describes the dependence of Type I and II
errors on R and estimate the optimum R, for which the hypotheses can be discriminated with
acceptable error probabilities.

The gamma distribution m = 3. The conˇdence intervals [a1, a2] (thin line) and [b1, b2] (thick line) for
the discrimination of the hypotheses T0 = 20 and TA = 40
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9. RADIOACTIVITY AS TIME PROCESS

There are two types of registration of a radioactive decays proceeding in the time:
Å that beginning at a deˇnite point t = 0;
Å that performed within a ˇnite time interval [t1, t2], t1 �= 0 and t2 �= ∞.
The ˇrst model suggests that at a certain moment a decaying mass emerges at once; the

second one is more complicated for the analysis and we consider it here.
As mentioned above, a radioactive process is an avalanche of events at the starting moment

of the measurement and then the succession of a diminishing geometric progression of the
resting decays. Suppose that the decaying mass has sufˇciently many objects and is in an
equilibrium state (no new objects appear). Theoretically, any two ˇnite observation intervals,
in which the number of registered events is greater than zero, contain the information about
the decay constant T . In [1], it has been shown that if the decaying mass is sufˇciently large,
then for a however big decay constant the probability that at a ˇnite point t1 a decay will take
place, tends to 1, if t → ∞. But the accuracy and reliability of the T estimate are negatively
in	uenced not only by the low statistics, but also by the trimming of the observation interval:
[t1, t2] instead of [0,∞].

Let us consider the second case in more detail. If the events are observed only within an
interval [t1, t2] (a limited subinterval of the whole t-axis) and the events falling in [0, t1] or
[t2,∞] are not registered, the distribution function is

F (t, T ) =

⎧⎨
⎩

1 − exp
(
− t

T

)
if t ∈ [t1, t2];

0 otherwise.
(6)

We have the distribution density which is nonzero only in [t1, t2], where it has the form

p(t) =
exp

(
− t

T

)/
T

exp
(
− t1

T

)
− exp

(
− t2

T

) . (7)

Its mean Tt is given by the formula

Tt =
T

(
exp

(
− t1

T

) (
t1
T

+ 1
)
− exp

(
− t2

T

) (
t2
T

+ 1
))

exp
(
− t1

T

)
− exp

(
− t2

T

) . (8)

The mean (8) can differ very strongly from the ©trueª mean T (that is from the mean value
corresponding to (3)), especially if the sample is trimmed in the vicinity of zero, and obtaining
an accurate estimate of T is not an easy problem.

In case of low statistics, we cannot use histogram methods for the evaluation of T ; the
maximum likelihood estimator fails here too. Indeed, the likelihood function is

L(T ) =
m∏

j=1

p(tj), (9)
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and the maximum likelihood estimate of T is its value, at which (9) has the maximum.
Substituting (7) in (9) for p(tj), we see that the maximum of (9) will be reached at T = ∞,
if, at least, one tj gets in the interval [t1, t2].

Bearing in mind that among all functions, which could be taken as estimator, the best is
the mean, let us study under what conditions the mean Tt of a sample from [t1, t2] will be
close to T ?

We can use the fact that (8) depends on t1, t2, so that selecting the optimum t1, t2
(or only t2, because t1 is normally ˇxed), we have a chance to make Tt be equal to T .

Writing the equation

T

(
exp

(
− t1

T

) (
t1
T

+ 1
)
− exp

(
− t2

T

) (
t2
T

+ 1
))

exp
(
− t1

T

)
− exp

(
− t2

T

) = T

and dividing the both parts by T and reducing the fraction by exp (−t1/T ), we shall get

(
t1
T

+ 1
)
− exp

(
− t2 − t1

T

) (
t2
T

+ 1
)

= 1 − exp
(
− t2 − t1

T

)
,

from which the needed condition follows as:

ln
t2
t1

=
t2 − t1

T
. (10)

If t1 is ˇxed and t2 satisˇes (10), the mean of the sample in [t1, t2] is an unbiased consistent
estimator of the T parameter.

Equation (8) can be also used as moment estimator of T , i.e., substituting the sample mean
for Tt in (8) and solving it with respect to T , we shall get an estimate of T . The accuracy of
this estimate can be evaluated by expanding (8) into linear terms of T , and deriving T from
it as a function of Tt. However, the success of this method requires a large statistics.

10. TESTING

We can use the above-described method to the data, published in [3] in order to see to
what extent the conˇdence intervals reported there are optimum and compare them with the
results given by our method.

In the TASCA case, the authors reported the following estimate of the 294117 half-life
(in ms): 51+94

−20; the analysis used two decay chains; in the DGFRS case, the estimates, based

on three chains, are as follows: 50+60
−18.

It is very strange that these CIs are strongly asymmetric on the right from the T1/2 point.
The exponential distribution (as mentioned at the paper beginning) is an avalanche of the
events in the ˇrst time period ([0, T1/2]) Å one half of the total decay integral Å then one
fourth in the next [T1/2, 2T1/2], and so on. Therefore, the events to the right from T1/2 are
those of a small and rapidly diminishing probability, and, certainly, ˇrst of all, a CI should
cover events from the left side.
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The order statistics for m = 2 is [25.5, 76.5] ms. The minimal CI for the probability 0.68
is [8, 65]. Comparing the CI lengths 94 + 20 = 114 ms and 65 − 8 = 57 ms, we see that
the TASCA CI is not optimum Å the same covering probability, but a much longer length
(almost twice).

The order statistics for m = 3 (DGFRS case) is [17, 92] ms. The covering probability
is about 0.83. The minimal CI with the length 108 is [12, 120], which is covered by the
probability about 0.86. Here we see also that the DGFRS CI is not optimum Å not only its
CI length is longer, but also the covering probability is signiˇcantly smaller compared with
that of the OCI.

CONCLUSION

It has been shown that, unlike the normal and Poisson distributions, the exponential one
is very intolerant to the low statistics (1Ä4 events), so that the more or less exact parameter
estimation and reliable statistical tests strictly require the optimized techniques.

As such, for both the parameter (mean) estimation and the statistical tests a concept of
a conˇdence interval is formulated based on the order statistics, which, on the one hand,
provides their clear and natural interpretation, and, on the other hand, means a good com-
promise between the criteria: ©the shortest interval lengthª Ä ©the largest size of the covering
probabilityª.
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