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We study statistical properties of 3D classical spin glass under the in
uence of external ˇelds. It is
proved that in the framework of the nearest-neighboring model, 3D spin-glass problem at performing
of Birkhoff's ergodic hypothesis regarding to orientations of spins in 3D space, can be reduced to the
problem of disordered 1D spatial spin-chains (SSC) ensemble, where each spin chain interacts with a
random environment. The 1D SSC is deˇned as a periodic 1D lattice, where spins in nodes are randomly
oriented in 3D space, in addition, they all interact with each other randomly. For minimization of the
Hamiltonian in an arbitrary node of 1D lattice the recurrent equations and corresponding Sylvester's
criterion are obtained, which allow one to ˇnd energy local minimum. On the basis of these equations,
the high-performance parallel algorithm is developed, which allows one to calculate all statistical pa-
rameters of 3D spin glass, including distribution of a constant of spinÄspin interaction, from the ˇrst
principles of the classical mechanics.

ˆ§ÊÎ ÕÉ¸Ö ¸É É¨¸É¨Î¥¸±¨¥ ¸¢μ°¸É¢  3D ±² ¸¸¨Î¥¸±μ£μ ¸¶¨´μ¢μ£μ ¸É¥±² , ´ Ìμ¤ÖÐ¥£μ¸Ö ¶μ¤
¢μ§¤¥°¸É¢¨¥³ ¢´¥Ï´¨Ì ¶μ²¥°. „μ± § ´μ, ÎÉμ ¢ · ³± Ì ³μ¤¥²¨ ¡²¨¦ °Ï¨Ì ¸μ¸¥¤¥° § ¤ Î  3D ¸¶¨-
´μ¢μ£μ ¸É¥±² , ¶·¨ ¢Ò¶μ²´¥´¨¨ Ô·£μ¤¨Î¥¸±μ° £¨¶μÉ¥§Ò �¨·±£μË  μÉ´μ¸¨É¥²Ó´μ μ·¨¥´É Í¨¨ ¸¶¨´μ¢
¢ 3D-¶·μ¸É· ´¸É¢¥, ³μ¦¥É ¡ÒÉÓ ¸¢¥¤¥´  ± ¶·μ¡²¥³¥  ´¸ ³¡²Ö ´¥Ê¶μ·Ö¤μÎ¥´´ÒÌ 1D ¶·μ¸É· ´¸É¢¥´-
´ÒÌ ¸¶¨´-Í¥¶μÎ¥± (�‘–), £¤¥ ± ¦¤ Ö ¸¶¨´μ¢ Ö Í¥¶μÎ±  ¢§ ¨³μ¤¥°¸É¢Ê¥É ¸μ ¸²ÊÎ °´Ò³ μ±·Ê¦¥-
´¨¥³. 1D �‘– μ¶·¥¤¥²Ö¥É¸Ö ± ± ¶¥·¨μ¤¨Î¥¸± Ö 1D-·¥Ï¥É± , £¤¥ ¸¶¨´Ò ¢ Ê§² Ì ¢ 3D-¶·μ¸É· ´¸É¢¥
μ·¨¥´É¨·μ¢ ´Ò ¸²ÊÎ °´Ò³ μ¡· §μ³, ±·μ³¥ Éμ£μ, ¢¸¥ μ´¨ ¢§ ¨³μ¤¥°¸É¢ÊÕÉ ¤·Ê£ ¸ ¤·Ê£μ³ ¸²ÊÎ °´Ò³
μ¡· §μ³. „²Ö ³¨´¨³¨§ Í¨¨ £ ³¨²ÓÉμ´¨ ´  ¢ ¶·μ¨§¢μ²Ó´μ³ Ê§²¥ 1D-·¥Ï¥É±¨ ¶μ²ÊÎ¥´Ò ·¥±Ê··¥´É-
´Ò¥ Ê· ¢´¥´¨Ö ¨ ¸μμÉ¢¥É¸É¢ÊÕÐ¨¥ ±·¨É¥·¨¨ ‘¨²Ó¢¥¸É· , ±μÉμ·Ò¥ ¶μ§¢μ²ÖÕÉ ´ °É¨ ²μ± ²Ó´Ò°
³¨´¨³Ê³ Ô´¥·£¨¨. 	  μ¸´μ¢¥ ÔÉ¨Ì Ê· ¢´¥´¨° · §¢¨É ¢Ò¸μ±μ¶·μ¨§¢μ¤¨É¥²Ó´Ò° ¶ · ²²¥²Ó´Ò°  ²-
£μ·¨É³, ±μÉμ·Ò° ¶μ§¢μ²Ö¥É · ¸¸Î¨É ÉÓ ¢¸¥ ¸É É¨¸É¨Î¥¸±¨¥ ¶ · ³¥É·Ò 3D ¸¶¨´μ¢μ£μ ¸É¥±² , ¢ Éμ³
Î¨¸²¥ · ¸¶·¥¤¥²¥´¨¥ ±μ´¸É ´ÉÒ ¸¶¨´-¸¶¨´μ¢μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö, ¨¸Ìμ¤Ö ¨§ ¶¥·¢ÒÌ ¶·¨´Í¨¶μ¢
±² ¸¸¨Î¥¸±μ° ³¥Ì ´¨±¨.
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INTRODUCTION

Spin glasses and in general disordered spin systems as models are often used for study of
different complex natural and social phenomena in the ˇelds as diverse as physics, chemistry,
theoretical computer science (combinatorial optimization, traveling salesman, material sci-
ence), biology (Hopˇeld model), population genetics (hierarchical coalescence), nanoscience,
evolution, organization dynamics, human logic systems, economy (modeling of ˇnancial mar-
kets), etc. [1Ä11,13].

There are different theoretical and numerical methods to study spin glasses and disordered
spin systems in general. In all these approaches, the main object of investigation is a partition
function in its standard Gibbs' representation. One of the important directions of investigation
of partition function is the mean-ˇeld method. They, as a rule, are divided into two types.
The ˇrst consists of the true random-bond models, where the coupling between interacting
spins is taken to be independent random variables [12,14,15]. The solution of these models is
obtained by n-replica trick [12,15] and has required the invention of sophisticated schemes of
replica-symmetry breaking [15, 16]. In the models of the second type, the bond-randomness
is expressed in terms of some underlining hidden site-randomness and, thus, has superˇcial
nature. It has been pointed out in works [17Ä19], however, that this feature retains an
important physical aspect of true spin glasses, viz., they are random with respect to the
positions of magnetic impurities.

The problem of 3D spin-glass simulation is a typical NP hard problem. Nevertheless,
solution of the problem becomes more difˇcult and even problematic when spin glasses are
in states far from thermodynamic equilibrium. In this case, standard methods based on the
Monte Carlo simulations are, as a rule, not suitable for using.

In this paper, we study statistical properties of spin glasses at conditions when the time of
an in
uence of external ˇelds is much less of the characteristic relaxation times of a medium,
but much more of the response time of individual spins. The last means that we have a typical
example when medium is in the nonequilibrium state, which is impossible to study using a
standard representation of partition function, deˇned in the framework of Gibbs' hypothesis.
In conjunction with this, the importance of development of new approaches and corresponding
parallel algorithms for solving problems of 3D spin glasses in external ˇeld is obvious.

1. FORMULATION OF THE PROBLEM

The 3D spin-glass system (the width of the layer is deˇned by the length of spin chain,
which includes Nx spins) in the framework of the nearest-neighboring model can be repre-
sented by Hamiltonian:

H(Nx) = H(1)(Nx) + H(2)(Nx), (1)

where the ˇrst term

H(1)(Nx) = −
Nx∑
i=1

Jii+1SiSi+1
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describes the disordered 1D spatial spin chains (SSC) (below we will name the central spin
chain). The second term

H(2)(Nx) = −
Nx∑
i=1

UiSi, Ui =
4∑

iσ=1

JiiσSiσ + hi

describes a random environment of the central 1D SSC (see Fig. 1) and the external ˇeld hi.
Note, that ||hi|| = hi = h0 cos (i2π/Nx) designates an external ˇeld, which is propagated
by direction of x-axis, h0 is its amplitude and Nx is the number of spins in standing wave

Fig. 1. The 1D SSC with the random environment.
The random environment consists of spins denoted

by symbols

formed by external ˇeld. In (1), Jii+1

and Jiiσ are random interaction constants
between arbitrary i and i + 1 spins and
between i and iσ spins, correspondingly,
Si,Si+1 and Siσ are spins (vectors) of the
unit length ||Si|| = 1, which in O(3) space
are orientated randomly. Ambient vectors,
for ˇxed σ and i = 1, 2, . . . , Nx are spin
chains in state of energy local minimum,
thus, they have their own inter-spin inter-
action constants Jσ

i,i+1. The main aim of
our study is development of a theoretical
approach and the relevant algorithm, which
will allow one to compute exactly all statis-
tical parameters of classical 3D spin glass,
including the distribution of spinÄspin in-
teractions' constant, at in
uence of exter-
nal ˇelds. Based on general physical con-
siderations, we need to construct such spin conˇgurations, where each spin in chain will be in
a state of a local energy minimum that obviously will provide a quasistability of a spin chain.
Given that each spin is represented by three projections, Si = (xi, yi, zi), then we can ˇnd
equations, which deˇne the condition of an extremum of Hamiltonian (1) in the ith node:

∂H

∂xi
= 0,

∂H

∂yi
= 0. (2)

Recall that equation ∂H/∂zi = 0 is not considered, since it is linearly dependent on the
previous two equations due to the fact that the length of a spin is a constant and equals
to unit.

Theorem. The Hamiltonian (1) is a solution of Eqs. (2) and it has an extremum in the
ith node, if the spin in the (i + 1)th node has the form

Si+1 = −Ji−1,iSi−1 + Ui

Ji,i+1
+

+ Si

⎧⎨
⎩

(Ji−1,iSi−1 + Ui)Si

Ji,i+1
±

√
J2

i,i+1 − ||Si × (Ji−1,iSi−1 + Ui)||2

Ji,i+1

⎫⎬
⎭ , (3)
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where the constant of spinÄspin coupling satisˇes the inequality

J2
i,i+1 � ||Si × (Ji−1,iSi−1 + Ui)||2 = A2

i . (4)

The energy of Hamiltonian in the ith node will be minimal, if the following inequalities
are satisˇed:

Axixi > 0, AxixiAyiyi − A2
xiyi

> 0, (5)

where Aηiηi = ∂2H/∂η2
i and Axiyi = ∂2H/(∂xi∂yi).

Now, we can calculate the second derivatives of Hamiltonian:

Aηiηi =
(
η2

i + z2
i

)
δi, Axiyi = xiyiδi, (6)

where δi =
(
zi−1Ji−1,i + zi+1Ji,i+1 + uz

i

)
z−3

i , and uz
i is the projection of vector Ui on

z-axis. Using (6), explicit forms of inequalities (5) can be easily found:

Axixi =
(
x2

i + z2
i

)
δi � 0, AxixiAyiyi − A2

xiyi
= z2

i δ2
i � 0. (7)

As can be seen, the second inequality of (7) is always satisˇed. Finally, taking into account (4),
the conditions of local minimum of Hamiltonian (1) in the ith node can be written in the form

δi � 0, |Ji,i+1| � Ai. (8)

In our previous work [20], it was shown that the unperturbed by external ˇelds 3D spin
glass at condition when in the reciprocal lattice regarding of directions of spins is implemented
conditions for using of Birkhoff's ergodic hypothesis, the initial problem can be reduced to
the problem of a nonideal ensemble of 1D SSC. Recall that, when we say that the ensemble
is nonideal, we mean that 1D spin chain interacts with its random environment consisting of
four disordered 1D spin chains. As analysis shows, at switching of weak external ˇelds, the
possibility of the reduction of 3D spin-glass problem to that of nonideal ensemble of 1D spin
chains remains valid. In a nonideal ensemble, each classical spin chain is characterized by
two parameters Å energy and magnetization. The last means that many important properties
of statistical ensemble can be studied in the space of an energy ε and magnetization p,
equivalently constructing the distribution function for an energy and magnetization of nonideal
ensemble.

Thus, the main problem is concluded in a solution of direct problem, namely, the numerical
simulation of the nonideal ensemble of disordered 1D SSC.

Now, we have to construct the distribution function of an energy and magnetization
of the nonideal ensemble. In this connection, it is useful to divide axis of an energy
ε and magnetization p into small regions 0 > ε0 > . . . > εn, (0 > p0;x > . . . > pn;x),
(0 > p0;y > . . . > pn;yx), and (0 > p0;z > . . . > pn;z), where n � 1. The number of
stable 1D SSC conˇgurations with the length Lx in the range of energy [ε − δε, ε + δε],
where |δε| � 1, and polarization range [px − δpx, px + δpx], |δpx| � 1, [py − δpy, py + δpy],
|δpy| � 1 and [pz − δpz, pz + δpz], |δpz| � 1, will be denoted by MLx(ε), while the number

of all stable 1D SSC conˇgurations Å correspondingly, by symbol M full
Lx

=
n∑

i,j=1

MLx(εi,pj).

Accordingly, the multidimensional distribution function of nonideal ensemble 1D SSC may
be deˇned by the following formula:

FLx(ε,p; g) =
MLx(ε,p; g)

M full
Lx

, (9)
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where the distribution function is normalized to unit

lim
n→∞

n∑
i,j=1

FLx(εi,pj ; g) δεj δpj =
∫

d3p

0∫

−∞

FLx(ε,p; g) dε = 1, (10)

where δpj = δpj;xδpj;yδpj;z, and g denotes a set of external ˇeld's parameters.

2. SIMULATION ALGORITHM

The strategy of numerical simulation for one spin chain is the following. At ˇrst, we
randomly generate initial spin conˇguration, which consists of four pairs of ambient vectors
and interaction constants (S1σ , S2σ and Jσ

1,2, σ = 1, . . . , 4), one pair of SSC spin vectors
and interaction constant (S1, S2 and J1,2). Recall that previously the interaction constants
in the case of unperturbed by external ˇelds 3D spin glass [20] are generated by log-normal

Fig. 2. The algorithm of parallel simulation of statistical parameters of a nonideal ensemble of disor-

dered 1D SSC
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distribution, while for the case when 3D spin glass is under the in
uence of external ˇelds,
spinÄspin interaction constants are generated by normal distribution. Now, when the initial
conˇguration is deˇned, we can go over to the computation of spin chain under the in
uence
of external ˇelds, which must satisfy conditions of local energy minimum (8). At ˇrst,
ambient spin-chains next node is computed as 1D SSC using (3) and taking into consideration
that Ui = 0 and h0 = 0, which also should satisfy condition (8). Now, when we have
environment vectors, central spin's next node can be calculated. Note, that in calculation of
each node (for both ambient spin chains and central spin chain), two solutions are found (see
the scheme in Fig. 2, they are designated by symbols + and −), however, at continuation of
simulation of the spin chain we leave in each node only one solution, which is being randomly
selected. This algorithm is being executed in parallel in order to compute desired amount of
different spin chains. Finally, in the last stage of simulation with the help of formulas (9)
and (10), we calculate distributions of corresponding parameters, which characterize statistical
properties of 3D spin glass under the in
uence of external ˇelds.

3. NUMERICAL EXPERIMENTS

Note, that calculations of 3D spin glass or, more correctly, a nonideal ensemble of
1D SSC, are done for spin chains having the length 100. This approach considerably reduces
the amount of needed computations and gives us a possibility to solve a conceptually NP
hard problem, such as, in particular, 3D spin-glass problem, and to construct all statistical
parameters, which describe 3D spin glass. It is analytically proved and by parallel simulation
is shown, that the distribution of a spinÄspin interaction constant cannot be described by the
normal Gaussian distribution model (the GaussÄEdwardsÄAnderson distribution) (see Fig. 3).

Fig. 3. Distribution of spinÄspin interaction constant in a nonideal ensemble consisting of 1D spin
chains with the length 100, depending on an external ˇeld
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Fig. 4. The energy distributions in a nonideal ensemble depending on amplitude of an external ˇeld

As analysis shows, the curve of distribution is a nonanalytical function and probably it
can be approximated precisely by the L�evy skew α-stable distribution function. As shown
by calculations, at the increasing of the number of spin chains the ergodicity in a known sense

Fig. 5. The average value of polarization on corre-

sponding coordinates depending on an external ˇeld

comes already at ∝ N2
x . As we can see

from Fig. 3, the distribution of a spinÄspin
interaction constant depends on an ampli-
tude of the external ˇeld, however, its char-
acteristic structure does not change. In the
work, the energy distributions in a nonideal
ensemble depending on an external ˇeld are
also presented (see Fig. 4). As calculations
show, for a nonideal ensemble consisting of
10000 spin chains, the dimensional effects
practically disappear and the energy distri-
butions F (ε; g) have one global maximum
(see Fig. 4). The maximum of distribution
function at increasing of amplitude of an
external ˇeld moves in area of lower neg-
ative values of energy. As to the magneti-
zation distributions, as computation shows,
at in
uence on media with the weak exter-
nal ˇeld the distribution of magnetization in
all coordinates frustrates. After procedure of averaging of magnetization by fractal struc-
tures [21], we ˇnd average values of magnetization on corresponding coordinates, depending
on amplitude of an external ˇeld. As we can see at inclusion of an external ˇeld, a spin
glass in all directions is magnetized, however, magnetization steadily goes up in direction of
propagation of an external ˇeld, with increasing of amplitude of an external ˇeld (see Fig. 5).



606 Ayryan E. A., Gevorkyan A. S., Sahakyan V. V.

CONCLUSION

Using the proof about equivalence of models of 3D spin glass and nonideal ensemble
1D SSC, we have developed a new parallel algorithm for simulation of statistical properties
of 3D spin glasses under the in
uence of external ˇelds. The central idea based on numerical
simulation is a method of construction of stable spin chains node by node with consideration of
external random (random environment) and regular (external ˇelds) in
uences. For realization
of this idea we have used a model of the nearest-neighboring Hamiltonian of Heisenberg.
The developed algorithm allows one on the basis of ˇrst principles of classical mechanics to
calculate all statistical parameters of 3D spin glasses including the distribution of spinÄspin
interaction constant under external ˇelds. An important peculiarity of the developed method
is the possibility of exact simulation of 3D spin glasses including the situations when system
is far from thermodynamic equilibrium, and we cannot use the well-known representations for
the partition function, which are based on Gibbs's hypothesis. Let us note that the last is very
important for investigation of properties of disordered spin systems on nanoscales of space-
time, development of which is closely connected to development of modern technologies and
in general of nanoscience. Finally, let us note that the program for numerical simulations
of 3D spin glasses is created using the GPU technologies, which achieves high performance
parallel calculations for the aforementioned problems.
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