КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В ФИЗИКЕ

КОМПЬЮТЕРНАЯ МОДЕЛЬ КУБИТА

Д.А.Славнов

Московский государственный университет им. М.В.Ломоносова, Москва

Построена компьютерная модель кубита. Рассмотрено несколько ключевых экспериментов в физике квантовой информации: 1) распределение квантовых наблюдаемых для одиночного кубита; 2) корреляционные функции в квантовом синглетном состоянии двух кубитов; 3) парадокс Эйнштейна–Подольского–Розена; 4) нарушение неравенства Белла; 5) квантовая телепортация; 6) фиделити телепортации. Во всех этих случаях предложенная модель регулярно воспроизводит результаты квантовых измерений без использования подгоночных параметров.

The computer model of a qubit is constructed. We have considered a number of key experiments in physics of the quantum information: i) distribution of value of quantum observables for a single qubit; ii) correlation functions in a quantum singlet state of two qubits; iii) Enstein–Podolsky–Rosen paradox; iv) violatation of Bell inequality; v) quantum state teleportation; vi) fidelity of teleportation. In all these cases, the proposed model regulary reproduces results of quantum measurements without use of adjustable parameters.

PACS: 03.65.Ud

Элементарной единицей в квантовой теории информации является кубит. В дальнейшем термином «кубит» мы будем называть не только единицу информации, но и носитель соответствующей информации. В предлагаемой работе предпринята попытка заменить кубит так называемым мягким кубитом (софт-кубитом), или более коротко скубитом. С одной стороны, скубит должен нести ту же наблюдаемую информацию, что и «железный» кубит, а с другой стороны, скубит должен допускать реализацию в виде компьютерной программы. В отличие от состояния «железного» кубита компьютерная программа может храниться практически бесконечно долго и передаваться практически без искажения на любые расстояния.

В физике квантовой информации считается, что состояние кубита описывается вектором одночастичного гильбертова пространства. Мы будем считать, что скубит следует характеризовать не квантовым состоянием, а более детально, так называемым элементарным состоянием. Это понятие было введено в статье [1]. В отличие от квантового состояния элементарное состояние может рассматриваться в качестве элементарного события колмогоровской теории вероятностей. Это позволяет работать со скубитом, используя колмогоровскую теорию вероятностей [2].

Так же как обычный кубит, скубит может быть реализован различными способами. Мы воспользуемся способом, предложенным в статье [3]. В этом варианте скубит имеет вид многослойной серо-раскрашенной сферы единичного радиуса. Каждый слой раскрашен следующим образом. Положительный полюс — черный (+1); отрицательный

688 Славнов Д.А.

полюс — белый (-1). Промежуточные области имеют серую окраску, насыщенность которой черным цветом меняется по закону $\rho = (\mathbf{rR})$, где \mathbf{r} — единичный радиус-вектор, проведенный в текущую серую точку, а \mathbf{R} — единичный радиус-вектор, проведенный в положительный полюс. Разные слои могут иметь разную ориентацию. Кроме того, с каждым слоем, имеющим номер k, связана функция $\varepsilon^{(k)}(\mathbf{r})$, которая для всех \mathbf{r} , во-первых, удовлетворяет условиям

$$-1/2 < \varepsilon^{(k)}(\mathbf{r}) < +1/2, \quad \varepsilon^{(k)}(-\mathbf{r}) = -\varepsilon^{(k)}(\mathbf{r}),$$

во-вторых, одному из условий

$$|\mathbf{R}^{(k)}\mathbf{r} + \varepsilon^{(k)}(\mathbf{r})| > 1/2 \tag{1}$$

или

$$\mathbf{R}^{(k)}\mathbf{r} + \varepsilon^{(k)}(\mathbf{r}) \leqslant 1/2.$$
(2)

Слой, для которого выполняется условие (1), назовем активным, а для которого выполняется условие (2) — пассивным.

Далее для скубита используется терминология, которая применяется для кубита, реализуемого в виде квантовой частицы со спином 1/2. Элементарное состояние скубита фиксируется однозначно, если заданы $\mathbf{R}^{(k)}$ и $\varepsilon^{(k)}(\mathbf{r})$ для всех k и \mathbf{r} . В компьютерной реализации эти велечины выбираются генератором случайных чисел, \mathbf{r} удерживается фиксированным. Будем считать, что прибор, измеряющий проекцию спина $S(\mathbf{r})$, реагирует только на активный слой.

Теперь опишем воздействие на скубит прибора, который является аналогом прибора, называющегося в оптике поляризационным светоделителем PBS. В оптике этот прибор разделяет неполяризованный луч света на два луча, поляризованных в двух ортогональных направлениях. В нашем случае будем считать, что геометрия прибора выделяет некоторое направление **n** (единичный вектор) и разделяет ансамбль скубитов на два подансамбля Ψ_n^+ и Ψ_n^- . Для каждого отдельного скубита результат измерения определяется генератором случайных чисел. Генератор выдает случайные значения $\mathbf{R}^{(1)}$ и $\varepsilon^{(1)}(\mathbf{n})$ для первого слоя скубита. Если $\mathbf{R}^{(1)}\mathbf{n} + \varepsilon^{(1)}(\mathbf{n}) > 1/2$, то PBS регистрирует значение $S(\mathbf{n}) = +1/2$ и направляет скубит в подансамбль Ψ_n^+ . Если $\mathbf{R}^{(1)}\mathbf{n} + \varepsilon^{(1)}(\mathbf{n}) < -1/2$, то PBS регистрирует значение $S(\mathbf{n}) = -1/2$ и направляет скубит в подансамбль Ψ_n^- . Если выполняется неравенство (2), то PBS не регистрирует никакого значения, а делает вторую попытку, переходя на второй слой, и повторяет всю процедуру.

Подансамбли $\Psi_{\mathbf{n}}^+$ и $\Psi_{\mathbf{n}}^-$ соответствуют квантовым состояниям с определенными значениями $S(\mathbf{n}) = +1/2$ и $S(\mathbf{n}) = -1/2$ соответственно. Для подансамбля $\Psi_{\mathbf{n}}^+$ принципиальная схема компьютерной программы, которая позволяет найти среднее значение проекции спина на направление **r**, выглядит следующим образом.

1. Фиксируются два единичных вектора n и r.

2. Генератор случайных чисел генерирует единичный вектор $\mathbf{R} \in \mathfrak{R}^+_{\mathbf{n}}$ (верхняя полусфера с центральным вектором **n**) и $\varepsilon(\mathbf{r}) \in (-1/2, +1/2)$.

3. Вычисляется $|\mathbf{Rr} + \varepsilon(\mathbf{r})|$.

4. Если выполняется неравенство (1), то вычисляется **Rr**. Если **Rr** > 0, то число 1 добавляется в память M^+ ; если **Rr** < 0, то число 1 добавляется в память M^- . На этом эксперимент с данным скубитом считается завершенным.

5. Если в п. 3 выполняется неравенство (2), то программа возвращается к п. 2 и т. д.

6. После того как цикл оборвется (или будет искусственно оборван ограничителем), программа переходит к исследованию следующего скубита.

7. После обработки достаточного числа скубитов вычисляется среднее значение проекции спина по формуле

$$\langle S(\mathbf{r}) \rangle = \frac{1}{2} \frac{M_{+} - M_{-}}{M_{+} + M_{-}}.$$

Здесь символы M_{\pm} обозначают числа, скопившиеся в соответствующих памятях.

Результат такого измерения описывается формулой

$$\langle S(\mathbf{r})\rangle = \frac{1}{2}(\mathbf{rn}).$$
 (3)

В этой схеме вектор n следует рассматривать не как характеристику отдельного скубита, а как характеристику подансамбля Ψ_n^+ всех скубитов, для которых $\mathbf{R} \in \mathfrak{R}_n^+$, так как для отдельного скубита нельзя вычислить среднее значение $\langle S(\mathbf{r}) \rangle$. Таким образом, в качестве представителя квантового состояния здесь рассматривается не вектор гильбертова пространства, а подансамбль Ψ_n^+ .

Перейдем к рассмотрению синглетного состояния двух частиц. В этом случае при измерении проекций спина первой и второй частиц $S_1(\mathbf{n})$ и $S_2(\mathbf{n})$ на любое направление **n** всегда выполняется равенство

$$S_1(\mathbf{n}) + S_2(\mathbf{n}) \equiv S(\mathbf{n}) = 0. \tag{4}$$

Это предполагает жесткую корреляцию между элементарными состояниями скубитов 1 и 2. Такую корреляцию можно реализовать, потребовав выполнение равенств

$$\mathbf{R}_{1}^{(k)} + \mathbf{R}_{2}^{(k)} = 0, \quad \varepsilon_{1}^{(k)}(\mathbf{r}) = \varepsilon_{2}^{(k)}(-\mathbf{r}).$$
(5)

Здесь $\mathbf{R}_{1}^{(k)}$ и $\mathbf{R}_{2}^{(k)}$ — векторы ориентации *k*-го слоя для первого и второго скубитов; $\varepsilon_{i}^{(k)}(\mathbf{r})$ (i = 1, 2) — функции $\varepsilon^{(k)}(\mathbf{r})$ для этих скубитов. Из равенств (5) сразу же следует, что номера активных слоев для первого и второго скубитов совпадают и для любого направления **n** выполняется соотношение (4) вне зависимости от расстояния между скубитами в момент измерения. Иными словами, реализуется ситуация парадокса Эйнштейна–Подольского–Розена [4]. Корреляция (4) возникает не в момент измерения проекций спина, а в момент приготовления синглетного двухскубитного состояния. Частицы с такой корреляцией часто называют ЭПР-парой.

Следуя процедуре, аналогичной той, которая привела к формуле (3), получим

$$P(\mathbf{r}_1, \mathbf{r}_2, j_1, j_2) = \frac{1}{4} (1 - j_1 j_2(\mathbf{r}_1 \mathbf{r}_2)).$$
(6)

Это выражение описывает вероятность обнаружить у первого скубита по направлению \mathbf{r}_1 проекцию спина, равную $j_1/2$, а у второго скубита по направлению \mathbf{r}_2 обнаружить проекцию спина, равную $j_2/2$. Вероятность (6) совпадает с той, которая получается в стандартном подходе к квантовой механике.

690 Славнов Д.А.

Из формулы (6) для корреляционной функции получаем выражение

$$E(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{4} \sum_{j_1, j_2} j_1 j_2 P(\mathbf{r}_1, \mathbf{r}_2, j_1, j_2) = -\frac{1}{4} (\mathbf{r}_1 \mathbf{r}_2),$$

которое нарушает неравенство Белла.

Теперь обсудим квантовую телепортацию. Это явление связывается с запутанными квантовыми состояниями. Чаще всего используются так называемые состояния Белла: одно синглетное состояние $|\Psi^{(-)}\rangle_{12} = 1/\sqrt{2}[|+\rangle_1|-\rangle_2 - |-\rangle_1|+\rangle_2]$ и три триплетных состояния $|\Psi^{(+)}\rangle_{12}$, $|\Phi^{(-)}\rangle_{12}$, $|\Phi^{(+)}\rangle_{12}$. Эти состояния образуют ортонормированный базис в двухчастичном гильбертовом пространстве. Строятся они из одночастичных состояний $|\pm\rangle_i$ (i = 1, 2).

На рисунке изображена принципиальная схема квантовой телепортации. S — источник начального состояния; EPR — источник ЭПР-пар; А — анализатор состояний Белла (Алиса); В — унитарный преобразователь (Боб); {C} — канал классической связи;

Схема квантовой телепортации

ванного состояния. 4} В реальных экспериментах в качестве анализатора двухчастичных состоя-

ний частиц $\{1\}$ и $\{2\}$ обычно используется простой светоделитель DS. Он хорошо выделяет синглетное состояние, но не может разделить триплетные состояния.

{1} — носитель начального телепортируемого состояния; {2}-{3} — ЭПР-пара;

{4} — носитель конечного телепортиро-

Посмотрим, как это явление можно реализовать с помощью скубитов. Сначала опишем программу, которая будет исполнять роль прибора DS. Эту программу также назовем DS. Геометрия прибора DS выделяет в пространстве некоторую декартову систему координат с направляющими векторами x, y, z. Потребуем, чтобы прибор DS мог различать между собой синглетное и три триплетных состояния. Эти состояния можно охарактеризовать произведениями проекций спинов для первой и второй частиц. Эти наблюдаемые совместимы. Комбинация $[S_1(\mathbf{x})S_2(\mathbf{x}) < 0, S_1(\mathbf{z})S_2(\mathbf{z}) < 0]$, характерна для синглетного состояния. Комбинация $[S_1(\mathbf{x})S_2(\mathbf{x}) > 0, S_1(\mathbf{z})S_2(\mathbf{z}) > 0]$, $[S_1(\mathbf{x})S_2(\mathbf{x}) > 0, S_1(\mathbf{z})S_2(\mathbf{z}) < 0]$, $[S_1(\mathbf{x})S_2(\mathbf{x}) < 0, S_1(\mathbf{z})S_2(\mathbf{z}) > 0] -$ для трех триплетных состояний.

Пусть скубиты {1} и {2} попадают в прибор DS. Будем считать, что прибор DS реагирует на активные слои скубитов {1}, {2} и измеряет знаки $S_1(\mathbf{x})S_2(\mathbf{x}), S_1(\mathbf{z})S_2(\mathbf{z})$. Таким образом, наш прибор DS различает все четыре ортогональные двухчастичные состояния. Поэтому с его помощью можно добиться стопроцентной эффективности телепортации.

Теперь вернемся к рис. 1. Источник S посылает Алисе пучок скубитов {1}, поляризованных по вектору n. Пусть векторы \mathbf{R}_1 характеризуют ориентацию активных слоев скубитов {1}, а $\varepsilon_1 \equiv \varepsilon_1(\mathbf{n})$ — значения функций ε_1 для этих слоев. Тогда для посылаемых источником S скубитов справедливо неравенство

$$\mathbf{R}_1\mathbf{n} + \varepsilon_1 - 1/2 > 0.$$

Источник EPR испускает ЭПР-пары скубитов {2}–{3}, векторы $\mathbf{R}_2 = -\mathbf{R}_3$ характеризуют ориентации активных слоев для этих скубитов, а $\varepsilon_2 = -\varepsilon_3$ — значения соответствующих функций ε для направления **n**.

Воспроизводя условия реального эксперимента, будем считать, что прибор DS отбирает те пары скубитов {1}-{2}, для которых он регистрирует синглетное предквантовое состояние. В нашем случае это пары, у которых для активных слоев $S_1(\mathbf{x})S_2(\mathbf{x}) < 0$ и $S_1(\mathbf{z})S_2(\mathbf{z}) < 0$. Это эквивалентно тому, что DS отбирает пары {1}-{3}, у которых

$$S_1(\mathbf{x})S_3(\mathbf{x}) > 0, \quad S_1(\mathbf{z})S_3(\mathbf{z}) > 0.$$

Для скубитов, для которых

$$\mathbf{R}_3\mathbf{n} + \varepsilon_3 > 1/2,$$

телепортация прошла успешно, а для скубитов, для которых

$$\mathbf{R}_3\mathbf{n}+\varepsilon_3<-1/2,$$

телепортация оказалась неуспешной.

Число скубитов, для которых телепортация прошла успешно, обозначим N_+ , а число скубитов, для которых телепортация кончилась неудачей, — N_- . Качество телепортации оценивается числом $F = N_+(N_+ + N_-)^{-1}$, которое принято называть фиделити.

Стандартный математический формализм квантовой механики предсказывает для всех направлений **n** фиделити F = 1. В реальном эксперименте [5] получены для фиделити значения $F_1 = 0.92 \pm 0.02$ при $\mathbf{n} = \mathbf{z}$, $F_1 = 0.90 \pm 0.03$ при $\mathbf{n} = \mathbf{x}$. Минимум фиделити $F_1 = 0.84 \pm 0.02$ достигался при $\mathbf{n} = 2^{-1/2}(\mathbf{z} + \mathbf{x})$. Относительное фиделити (отношение к максимальному значению) в минимуме имело значение $F_{1r} = 0.913$.

В более новом эксперименте [6], посвященном телепортации на большое расстояние, определены для фиделити следующие значения: $F_2 = 0,890 \pm 0,042$ при $\mathbf{n} = \mathbf{z}$, $F_2 = 0,865 \pm 0,046$ при $\mathbf{n} = \mathbf{x}$, $F_2 = 0,845 \pm 0,027$ при $\mathbf{n} = 2^{-1/2}(\mathbf{z} + \mathbf{x})$. Относительное фиделити при $\mathbf{n} = 2^{-1/2}(\mathbf{z} + \mathbf{x})$ равно $F_{2r} = 0,949$.

В нашем случае для величи
н N_+ и N_- (с точностью до общего множителя) получаются значения

$$N_{-}(\mathbf{n} = \mathbf{x}) = N_{-}(\mathbf{n} = \mathbf{z}) = 0,$$

$$N_{+}\left(\mathbf{n} = \frac{\mathbf{x} + \mathbf{z}}{\sqrt{2}}\right) = 4 + 2(\sqrt{2} - 1)^{2}, \quad N_{-}\left(\mathbf{n} = \frac{\mathbf{x} + \mathbf{z}}{\sqrt{2}}\right) = 2(\sqrt{2} - 1)^{2}.$$

Отсюда для фиделити следует

$$F(\mathbf{x}) = F(\mathbf{z}) = 1,$$
 $F\left(\mathbf{n} = \frac{\mathbf{x} + \mathbf{z}}{\sqrt{2}}\right) = \frac{2 + (\sqrt{2} - 1)^2}{2 + 2(\sqrt{2} - 1)^2} \approx 0.927.$

Последний результат находится посредине между F_{1r} и F_{2r} . С учетом ошибок эксперимента он хорошо согласуется со значениями для относительных фиделити в обоих экспериментах. Обратим внимание на то, что никаких подгоночных параметров мы не использовали.

Мы не делали никаких предположений о динамике рассматриваемой нами системы. Все рассмотренные нами квантовые эффекты являются чисто статистическими. При этом

692 Славнов Д.А.

они не являются следствиями какой-то специальной квантовой теории вероятностей. Они вполне укладываются в стандартную колмогоровскую теорию вероятностей. Единственное, о чем только не надо забывать, это то, что вероятностное пространство должно быть оснащено σ -алгеброй. Здесь имеется принципиальное различие между классическими и квантовыми системами. В то время как для классической системы можно ввести единую σ -алгебру, которая может обслужить все наблюдаемые, характерные для системы, в квантовой системе для каждой группы совместимых наблюдаемых надо вводить свою σ -алгебру и, соответственно, свою систему вероятностных мер. В нашем случае в построении таких мер существенную роль играли функции $\varepsilon(\mathbf{r})$, значения которых зависят от **r**. Напомним, что рассматриваемые нами наблюдаемые — проекции спина на направления **r** — являются несовместимыми для разных **r**.

СПИСОК ЛИТЕРАТУРЫ

- Славнов Д.А. Измерения и математический аппарат квантовой физики // ЭЧАЯ. 2007. Т. 38, № 2. С. 295–359; Slavnov D.A. Measurements and Mathematical Formalism of Quantum Mechanics // Phys. Part. Nucl. 2007. V. 38, No. 2. P. 147–176.
- Колмогоров А. Н. Основные понятия теории вероятностей. М.: Наука, 1974; Kolmogorov A. N. Foundations of the Theory of Probability. New York: Chelsea, 1956.
- Славнов Д. А. Макроскопическое моделирование нарушения неравенства Белла // ЭЧАЯ. 2010. T. 41, № 5. С. 1032–1057; Slavnov D. A. Macroscopic Simulation of Violation of Bell's Inequality // Phys. Part. Nucl. 2010. V. 41, No. 5. P. 766–777.
- 4. Эйнштейн А., Подольский Б., Розен Н. Можно ли считать, что квантово-механическое описание физической реальности является полным? // УФН. 1936. Т. 16, №4. С. 440–446; *Einstein A., Podolsky B., Rozen N.* Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? // Phys. Rev. 1935. V. 47. P. 777–780.
- 5. Jennewein T. et al. Experimental Nonlocality Proof of Quantum Teleportation and Entanglement Swapping // Phys. Rev. Lett. 2002. V. 88, No. 1. P. 017903–017907.
- Xiao-Song Ma et al. Quantum Teleportation over 143 Kilometres Using Active Feed-Forward // Nature. 2012. V. 489. P. 269–273.