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SOME COMMENTS ON HIGH-PRECISION STUDY
OF NEUTRINO OSCILLATIONS

S. M. Bilenky 1

Joint Institute for Nuclear Research, Dubna

Some problems connected with the high-precision study of neutrino oscillations are discussed. In
the general case of n-neutrino mixing, a convenient expression for transition probability, in which
only independent terms (and mass-squared differences) enter, is derived. For three-neutrino mixing, a
problem of a deˇnition of a large (atmospheric) neutrino mass-squared difference is discussed. The
possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments are
commented on as well.
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INTRODUCTION

The observation of neutrino oscillations in the atmospheric Super-Kamiokande [1], solar
SNO [2], reactor KamLAND [3], and solar neutrino oscillation experiments [4Ä6] is one of
the most important recent discoveries in particle physics.

Small neutrino masses, many orders of magnitude smaller than those of other fundamental
fermions, are an evidence of a beyond the Standard Model physics. One of plausible scenarios
which allows one to explain the smallness of neutrino masses is based on the assumption that
small (Majorana) neutrino masses are generated by the lepton-number violating the dimension
of ˇve effective Lagrangians [7]. In this case neutrino masses are suppressed with respect
to masses of leptons and quarks by the ratio of the electroweak scale v = (

√
2GF )−1/2 �

246 GeV and a scale Λ � v of a new lepton-number violating physics.
Neutrino oscillation data can be described by the three-neutrino mixing

νlL(x) =
3∑

i=1

UliνiL(x) (l = e, μ, τ). (1)

Here νi(x) is the ˇeld of neutrinos (Dirac or Majorana) with mass mi, and U is the unitary
3 × 3 PMNS [8Ä10] mixing matrix.

1E-mail: bilenky@gmail.com
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In the framework of the three-neutrino mixing, neutrino oscillations are characterized by
two neutrino mass-squared differences Δm2

23 and Δm2
12, three mixing angles θ12, θ23, θ13,

and one CP phase δ. From the analysis of the data of neutrino oscillation experiments, it was
established that Δm2

12 � Δm2
23, mixing angles θ23 and θ12 are large and mixing angle θ13

is small. The ˇrst information about the angle θ13 was obtained from the reactor CHOOZ
experiment [11], in which only the upper bound sin2 2θ13 � 1 · 10−1 was found.

The ˇrst data of neutrino oscillation experiments were described by expressions for neu-
trino transition probabilities in the leading approximation which was based on the assumption
that sin2 θ13 = 0. In this approximation, oscillations in atmospheric and KamLAND (solar)
regions are decoupled (see [12]): in the atmospheric region (atmospheric and long-baseline
accelerator neutrino oscillation experiments), neutrino oscillations are two-neutrino νμ � ντ

oscillations; in the solar region (the reactor KamLAND experiment), neutrino oscillations are
ν̄e � ν̄μ,τ oscillations. From analysis of the atmospheric and long-baseline accelerator oscil-
lation experiments, parameters Δm2

23 and sin2 2θ23 were determined. From analysis of the
data of the KamLAND and solar experiments, the other two neutrino oscillation parameters
Δm2

12 and sin2 2θ12 were inferred. In the leading approximation, the character of the neutrino
mass spectrum and such an important effect of the three-neutrino mixing as CP violation in
the lepton sector cannot be revealed.

With the measurement of the mixing angle θ13 in the reactor Daya Bay [13], RENO [14],
and Double CHOOZ [15] experiments, the situation with the study of neutrino oscillations
drastically changed. The investigation of neutrino oscillations entered into a high-precision
era, the era of measurements of small, beyond the leading approximation effects, which
could allow one to determine the character of the neutrino mass spectrum and to measure
CP phase δ.

In this paper, for the general case of the n-neutrino mixing, we derive a convenient
expression for the neutrino transition probability in vacuum, in which only independent terms
(and mass-squared differences) enter.

In various papers on neutrino oscillations large (atmospheric) neutrino mass-squared differ-
ence is determined differently. Difference between these deˇnitions is small (a few percent),
but in the era of precision measurements, apparently, it is desirable to have one uniˇed deˇ-
nition. The expression for transition probability presented here provides a natural framework
for introduction of two independent neutrino mass-squared differences in the case of the
three-neutrino mixing.

Determination of the neutrino mass spectrum character is one of the major aims of future
reactor neutrino experiments JUNO [16] and RENO-50 [17]. On the basis of the proposed
expression for the transition probability, we comment on this possibility.

1. GENERAL EXPRESSION FOR NEUTRINO TRANSITION PROBABILITY
IN VACUUM

For the general case of the neutrino mixing

ναL(x) =
3+ns∑
i=1

Uαi νiL(x) (α = e, μ, τ, s1, . . . , sns), (2)
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we derive here an expression for να → να′ transition probability alternative to the standard
one. Here ns is the number of sterile neutrino ˇelds, U is an unitary (3 + ns) × (3 + ns)
mixing matrix, νi(x) is the ˇeld of neutrino with mass mi.

From (2) and Heisenberg uncertainty relation it follows that normalized states of 	avor
νe, νμ, ντ and sterile νs1 , νs2 , . . . neutrinos are described by coherent superpositions of the
states of neutrinos with deˇnite masses (see, for example, [12,18,19]):

|να〉 =
n∑

i=1

U∗
αi|νi〉. (3)

Here |νi〉 is the state of the left-handed neutrino with mass mi, momentum �p, and energy
Ei =

√
p2 + m2

i � E + m2
i /2E (E = p is the energy of neutrino at mi → 0).

If at t = 0 	avor neutrino να is produced, at the time t we have

|να〉t =
∑
α′

|να′〉〈να′ | e−iH0t|να〉 =
∑
α′

|να′〉
(∑

i

Uα′i, e−iEit U∗
αi

)
, (4)

where H0 is the free Hamiltonian.
From (4) for the normalized probability of the να → να′ transition, we ˇnd the following

expression:

P (να → να′) =
∣∣∣∣∑

i

Uα′i, e−iEit U∗
αi

∣∣∣∣
2

=

=
∑

i

|Uα′i|2|Uαi|2 + 2
∑
i>k

Re (Uα′iU
∗
αiU

∗
α′kUαk e−2iΔki). (5)

Here

Δki =
Δm2

kiL

4E
, (6)

where Δm2
ki = m2

i − m2
k and L � t is the neutrino source-detector distance.

Taking into account the unitarity of the mixing matrix U for the ˇrst term of the proba-
bility (5), we have∑

i

|Uα′i|2|Uαi|2 = δα′α − 2
∑
i>k

Re (Uα′iU
∗
αiU

∗
α′kUαk). (7)

From (5) and (7) for the
(−)
να → (−)

να′ transition probability, we obtain the following standard
expression (see [20Ä22]):

P (ν̄α → ν̄α′) = δα′α − 4
∑
i>k

Re (Uα′iU
∗
αiU

∗
α′kUαk) sin2 Δki ±

± 2
∑
i>k

Im (Uα′iU
∗
αiU

∗
α′kUαk) sin 2Δki. (8)

Let us stress that not all quantities in (8) are independent. For example, in the case of the
three-neutrino mixing, three mass-squared differences in (8) are connected by the relation
Δm2

13 = Δm2
12 + Δm2

23. For α′ 	= α the quantities in the last term of (8) are connected
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by the relations Im (Uα′2U
∗
α2U

∗
α′1Uα1) = Im (Uα′3U

∗
α3U

∗
α′2Uα2) = −Im (Uα′3U

∗
α3U

∗
α′1Uα1)

which follow from the unitarity of the mixing matrix (see [21,22]).
We obtain here a simple expression for the neutrino transition probability in vacuum,

in which
• we take into account that there is one arbitrary common phase in the transition amplitude;
• we use the unitarity of the mixing matrix in the transition amplitude.
We have

P (να → να′) =
∣∣∣∣∑

i

Uα′i, e−i(Ei−Ep)t U∗
αi

∣∣∣∣
2

=
∣∣∣∣δα′α +

∑
i�=p

Uα′i(e−2iΔpi − 1)U∗
αi

∣∣∣∣
2

=

=
∣∣∣∣δα′α − 2i

∑
i�=p

Uα′i U∗
αi e−iΔpi sinΔpi

∣∣∣∣
2

, (9)

where p is an arbitrary ˇxed index.
From (9) we ˇnd

P (να → να′) = δα′α − 4
∑
i�=p

|Uαi|2(δα′α − |Uα′i|2) sin2 Δpi +

+ 8
∑

i>k;i,k �=p

Re (Uα′iU
∗
αiU

∗
α′kUαk e−i(Δpi−Δpk)) sin Δpi sin Δpk. (10)

Finally, we obtain the following general expression for
(−)
να →(−)

να′ transition probability [23]:

P (
(−)
να →(−)

να′) = δα′α − 4
∑
i�=p

|Uαi|2(δα′α − |Uα′i|2) sin2 Δpi +

+ 8
∑

i>k;i,k �=p

Re (Uα′iU
∗
αiU

∗
α′kUαk) cos (Δpi − Δpk) sin Δpi sin Δpk ±

± 8
∑

i>k;i,k �=p

Im (Uα′iU
∗
αiU

∗
α′kUαk) sin (Δpi − Δpk) sin Δpi sin Δpk, (11)

where sign + (−) refers to να → να′ (ν̄α → ν̄α′ ) transition.
In (11) only independent terms (and mass-squared differences) enter. For example, for

the three-neutrino mixing there are only two independent mass-squared differences and one
i > k term in the transition probability (because i, k 	= p).

2. THREE-NEUTRINO OSCILLATIONS

2.1. Atmospheric Neutrino Mass-Squared Difference. Flavor Neutrino Transition Prob-
ability. From analysis of the neutrino oscillation data it follows that one mass-squared differ-
ence (atmospheric) is much larger than the other one (solar). Two neutrino mass spectra are
possible in such a situation1:

1Usually neutrinos with small mass-squared difference are called ν1 and ν2. It is also assumed that m2 > m1,
i.e., Δm2

12 > 0.
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1. Neutrino spectrum with small mass-squared difference between the lightest neutrinos
(normal spectrum, NS)

m1 < m2 < m3, Δm2
12 � Δm2

23;
2. Neutrino spectrum with small mass-squared difference between the heaviest neutrinos

(inverted spectrum, IS)
m3 < m1 < m2, Δm2

12 � |Δm2
13|.

There are only two possibilities to introduce small (solar) Δm2
S and large (atmospheric)

Δm2
A mass-squared differences in the framework of the approach advocated here1:
1.

NS. Δm2
21 =−Δm2

S , Δm2
23 = Δm2

A (p = 2), (12)

IS. Δm2
12 = Δm2

S , Δm2
13 =−Δm2

A (p = 1); (13)

2.
NS. Δm2

12 = Δm2
S , Δm2

13 = Δm2
A (p = 1), (14)

IS. Δm2
21 =−Δm2

S , Δm2
23 =−Δm2

A (p = 2). (15)

In all papers on neutrino oscillations mixing angles, CP phase and solar mass-squared
difference are determined in the same way. However, atmospheric mass-squared difference
in various papers is determined differently. For example, (in terms of parameters introduced
in 1 above)

1. The Bari group determines large neutrino mass-squared difference as follows (see [24]):

Δm2 =
1
2
|Δm2

13 + Δm2
23| = Δm2

A +
1
2
Δm2

S . (16)

2. The NuFit group determines the atmospheric mass-squared difference as in 2 (see [25]):

Δm2
13 = Δm2

A + Δm2
S (NS), Δm2

23 = −(Δm2
A + Δm2

S) (IS). (17)

3. In the T2K paper [26], the atmospheric mass-squared difference is determined as in 1.
4. In the MINOS paper [27], large mass-squared difference is determined as |Δm2

23| for
both mass spectra. It is obvious, however, that Δm2

23 for NS and |Δm2
23| for IS are different

quantities.
The difference between different ©atmospheric neutrino mass-squared differencesª is a

few percent. It is determined by the ratio Δm2
S/Δm2

A � 3 · 10−2 and cannot be neglected in
the precision era. Apparently, one deˇnition is desirable.

We choose here the option 1. From (11) in the case of normal and inverted neutrino mass
spectra, we have, respectively,

PNS(
(−)
νl →

(−)
νl′) = δl′l − 4|Ul3|2(δl′l − |Ul′3|2) sin2 ΔA −

− 4|Ul1|2(δl′l − |Ul′1|2) sin2 ΔS − 8 Re (Ul′3U
∗
l3U

∗
l′1Ul1) cos (ΔA + ΔS) sin ΔA sin ΔS ∓

∓ 8 Im (Ul′3U
∗
l3U

∗
l′1Ul1) sin (ΔA + ΔS) sin ΔA sin ΔS (18)

1Notice that the ˇrst option corresponds to extraction of the phase connected with the intermediate neutrino mass
in the expression (9) and the second one, to extraction of the phase connected with the last mass.
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and

P IS(
(−)
νl →

(−)
νl′) = δl′l − 4|Ul3|2(δl′l − |Ul′3|2) sin2 ΔA −

− 4|Ul2|2(δl′l − |Ul′2|2) sin2 ΔS − 8 Re (Ul′3U
∗
l3U

∗
l′2Ul2) cos (ΔA + ΔS) sin ΔA sin ΔS ±

± 8 Im (Ul′3U
∗
l3U

∗
l′2Ul2) sin (ΔA + ΔS) sin ΔA sin ΔS . (19)

Here

ΔA,S =
Δm2

A,SL

4E
. (20)

Thus, transition probabilities depend on ©extreme valuesª of the elements of neutrino mixing
matrix: Ul′1(3) and Ul1(3) in the NS case (p = 2); Ul′2(3) and Ul2(3) in the IS case (p = 1).
Difference in signs of the last terms of (18) and (19) is connected with signs in (12) and (13).

If CP is violated in the lepton sector, we have

P (νl → νl′) 	= P (ν̄l → ν̄l′) (l′ 	= l). (21)

Let us determine the CP asymmetry

ACP
l′l = P (νl → νl′) − P (ν̄l → ν̄l′). (22)

The CP asymmetry satisˇes the following general conditions:

ACP
l′l = −ACP

ll′ (23)

and ∑
l′

ACP
l′l = 0. (24)

The ˇrst condition follows from the relation

P (νl → νl′) = P (ν̄l′ → ν̄l), (25)

which is a consequence of the CPT invariance. The second condition follows from the
conservation of the probability∑

l′

P (νl → νl′) =
∑
l′

P (ν̄l → ν̄l′) = 1. (26)

From (23) and (24) it follows that in the case of the three-neutrino mixing CP asymmetries
in different 	avor channels are connected by the following relations [28]:

ACP
μe = ACP

eτ = −ACP
μτ . (27)

From (18) in the case NS, we have

ACP
l′l = −16 ImUl′3U

∗
l3U

∗
l′1Ul1 sin (ΔA + ΔS) sin ΔA sin ΔS . (28)

For IS from (19) we ˇnd

ACP
l′l = 16 ImUl′3U

∗
l3U

∗
l′2Ul2 sin (ΔA + ΔS) sin ΔA sin ΔS . (29)
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In the next subsections, we present expressions for transition probabilities which are of
experimental interest. For that we use the standard parameterization of the PMNS mixing
matrix

U =

⎛
⎝ c13c12 c13s12 s13 e−iδ

−c23s12 − s23c12s13 eiδ c23c12 − s23s12s13 eiδ c13s23

s23s12 − c23c12s13 eiδ −s23c12 − c23s12s13 eiδ c13c23

⎞
⎠ . (30)

Here c12 = cos θ12, s12 = sin θ12, etc.
2.2. ν̄e → ν̄e Survival Probability. Expressions for the three-neutrino ν̄e survival probabil-

ities are important for the analysis of the data of the reactor neutrino experiments. From (18)
and (19) for normal and inverted mass ordering, we have, respectively,

PNS(ν̄e → ν̄e) = 1 − 4 |Ue3|2(1 − |Ue3|2) sin2 ΔA − 4 |Ue1|2(1 − |Ue1|2) sin2 ΔS −
− 8 |Ue3|2|Ue1|2 cos (ΔA + ΔS) sinΔA sin ΔS (31)

and

P IS(ν̄e → ν̄e) = 1 − 4 |Ue3|2(1 − |Ue3|2) sin2 ΔA − 4 |Ue2|2(1 − |Ue2|2) sin2 ΔS −
− 8 |Ue3|2|Ue2|2 cos (ΔA + ΔS) sin ΔA sin ΔS . (32)

Using the standard parameterization of the PMNS mixing matrix (30), from (18) and (19) for
NS and IS, we have, respectively,

PNS(ν̄e → ν̄e) = 1 − sin2 2θ13 sin2 ΔA − (sin2 2θ12c
2
13 + sin2 2θ13c

4
12) sin2 ΔS −

− 2 sin2 2θ13c
2
12 cos (ΔA + ΔS) sinΔA sin ΔS (33)

and

P IS(ν̄e → ν̄e) = 1 − sin2 2θ13 sin2 ΔA − (sin2 2θ12c
2
13 + sin2 2θ13s

4
12) sin2 ΔS −

− 2 sin2 2θ13s
2
12 cos (ΔA + ΔS) sin ΔA sin ΔS . (34)

Notice that P IS(ν̄e → ν̄e) can be obtained from PNS(ν̄e → ν̄e) by the change c2
12 → s2

12.
2.3. νμ → νe (ν̄μ → ν̄e) Appearance Probability. Vacuum three-neutrino expressions for

(−)
νμ → (−)

νe transition probabilities are important for the analysis of the data of long-baseline
accelerator experiments, in which matter effects are negligible. From (18) and (19), we have

PNS(
(−)
νμ →(−)

νe) = 4 |Ue3|2|Uμ3|2 sin2 ΔA + 4 |Ue1|2|Uμ1|2 sin2 ΔS −
− 8 Re (Ue3U

∗
μ3U

∗
e1Uμ1) cos (ΔA + ΔS) sin ΔA sin ΔS ∓

∓ 8 Im (Ue3U
∗
μ3U

∗
e1Uμ1) sin (ΔA + ΔS) sin ΔA sin ΔS (35)

and

P IS(
(−)
νμ →(−)

νe) = 4 |Ue3|2|Uμ3|2 sin2 ΔA + 4 |Ue2|2|Uμ2|2 sin2 ΔS −
− 8 Re (Ue3U

∗
μ3U

∗
e2Uμ2) cos (ΔA + ΔS) sin ΔA sin ΔS ±

± 8 Im (Ue3U
∗
μ3U

∗
e2Uμ2) sin (ΔA + ΔS) sin ΔA sin ΔS . (36)



Some Comments on High-Precision Study of Neutrino Oscillations 727

Using the standard parameterization of the PMNS mixing matrix in the case of NS, we have

PNS(
(−)
νμ →(−)

νe) = sin2 2θ13s
2
23 sin2 ΔA +

+ (sin2 2θ12c
2
13c

2
23 + sin2 2θ13c

4
12s

2
23 + Kc2

12 cos δ) sin2 ΔS +

+ (2 sin2 2θ13s
2
23c

2
12 + K cos δ) cos (ΔA + ΔS) sinΔA sinΔS ∓

∓ 8JCP sin (ΔA + ΔS) sin ΔA sin ΔS . (37)

Here
K = sin 2θ12 sin 2θ13 sin 2θ23c13, (38)

and

JCP =
1
8
K sin δ (39)

is the Jarlskog invariant [29].
In the case of the inverted neutrino mass spectrum, we ˇnd

P IS(
(−)
νμ →(−)

νe) = sin2 2θ13s
2
23 sin2 ΔA +

+ (sin2 2θ12c
2
13c

2
23 + sin2 2θ13s

4
12s

2
23 − Ks2

12 cos δ) sin2 ΔS +

+ (2 sin2 2θ13s
2
23s

2
12 − K cos δ) cos (ΔA + ΔS) sin ΔA sin ΔS ∓

∓ 8JCP sin (ΔA + ΔS) sin ΔA sin ΔS . (40)

For the CP asymmetry in the case of NS (IS), we have

ACP
eμ = −16JCP sin (ΔA + ΔS) sin ΔA sin ΔS . (41)

2.4. νμ → νμ (ν̄μ → ν̄μ) Survival Probability. From (11) for
(−)
νμ →(−)

νμ survival probability
in the case of the normal and inverted mass ordering, we have, correspondingly,

PNS(
(−)
νμ →(−)

νμ) = 1 − 4 |Uμ3|2(1 − |Uμ3|2) sin2 ΔA − 4 |Uμ1|2(1 − |Uμ1|2) sin2 ΔS −
− 8 |Uμ3|2|Uμ1|2 cos (ΔA + ΔS) sinΔA sin ΔS (42)

and

P IS(
(−)
νμ →(−)

νμ) = 1 − 4 |Uμ3|2(1 − |Uμ3|2) sin2 ΔA − 4 |Uμ2|2(1 − |Uμ2|2) sin2 ΔS −
− 8 |Uμ3|2|Uμ2|2 cos (ΔA + ΔS) sin ΔA sin ΔS . (43)

Using standard parameterization of the PMNS matrix, we ˇnd

PNS(
(−)
νμ →(−)

νμ) = 1 − (sin2 2θ23c
2
13 + sin2 2θ13s

4
23) sin2 ΔA −

− 4
(

c2
23s

2
12 + s2

23c
2
12s

2
13 +

K cos δ

4c2
13

) (
1 − c2

23s
2
12 − s2

23c
2
12s

2
13 −

K cos δ

4c2
13

)
sin2 ΔS −

− 2(sin2 2θ23c
2
13s

2
12 + sin2 2θ13c

2
12s

4
23 +

+ Ks2
23 cos δ) cos (ΔA + ΔA) sin ΔA sin ΔS (44)
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and

P IS(
(−)
νμ →(−)

νμ) = 1 − (sin2 2θ23c
2
13 + sin2 2θ13s

4
23) sin2 ΔA −

− 4
(

c2
23c

2
12 + s2

23s
2
12s

2
13 −

K cos δ

4c2
13

) (
1 − c2

23c
2
12 − s2

23s
2
12s

2
13 +

K cos δ

4c2
13

)
sin2 ΔS −

− 2(sin2 2θ23c
2
13c

2
12 + sin2 2θ13s

2
12s

4
23 − Ks2

23 cos δ) cos (ΔA + ΔA) sin ΔA sin ΔS , (45)

where K is given by the relation (38). Notice that in the case of long-baseline experiments
with ΔA � 1 (MINOS, T2K), the term proportional to sin2 ΔS gives a very small contribution
to the probability (sin2 ΔS � 10−3).

2.5. A Comment on the Possibility to Reveal the Character of Neutrino Mass Spec-
trum in Future Reactor Experiments. Dependence on the neutrino mass ordering of the
probability of reactor νe's to survive was noticed in [30], in which reactor CHOOZ data
were analyzed in the framework of three-neutrino mixing. A reactor experiment with reactor-
detector distance of 20Ä30 km, which could reveal the character of neutrino mass spectrum,
was proposed in [31, 32]. Later in numerous papers a possibility to determine the neutrino
mass ordering in an intermediate-baseline reactor experiment (∼ 50 km) was analyzed in detail
(see [33] and references therein). Two reactor experiments JUNO [16] and RENO-50 [17],
in which the neutrino mass ordering is planned to be determined, are under preparation
at present.

The ν̄e → ν̄e survival probability (expressions (18) and (19)) can be written in the form

P (ν̄e → ν̄e) = 1 − sin2 2θ13 sin2 ΔA − 4X(1 − X) sin2 ΔS −
− 8 sin2 θ13X cos (ΔA + ΔS) sin ΔA sin ΔS . (46)

In the case of the normal and inverted mass spectra, we have, respectively,

X = XNS = cos2 θ13 cos2 θ12 (47)

and
X = XIS = cos2 θ13 sin2 θ12. (48)

From the ˇt of the data that will be obtained in the reactor JUNO experiment after six years
of data taking, the parameters Δm2

S , Δm2
A, and sin2 2θ12 will be determined with accuracy

better than 1% (see, for example, [34]). In the Daya Bay experiment the parameter sin2 θ13

can be determined with accuracy ∼ 4%. Such a precision will, apparently, allow one to
distinguish the value X � 0.682 (NS) from the value X � 0.295 (IS) (we used best-ˇt values
sin2 θ12 = 0.302, sin2 θ13 = 0.0227).

3. TRANSITIONS OF FLAVOR NEUTRINOS INTO STERILE STATES

Data of atmospheric, solar, reactor, and accelerator neutrino oscillation experiments are
described by the three-neutrino mixing with two-neutrino mass-squared differences Δm2

S �
7.5 · 10−5 eV2 and Δm2

A � 2.4 · 10−5 eV2. There exist, however, indications in favor of
neutrino oscillations with mass-squared difference(s) about 1 eV2. These indications were
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obtained in the following short-baseline neutrino experiments (with L ranging from a few
meters to about 500 m):

1. In the LSND experiment [35]. In this experiment neutrinos were produced in decays
of π+'s and μ+'s. Appearance of ν̄e's (presumably produced in the transition ν̄μ → ν̄e) was
detected. In the MiniBooNE experiment [36,37]. In this experiment an excess of low energy
νe's (ν̄′

es) was observed.
2. In the old reactor neutrino experiments. Data of these experiments were reana-

lyzed in [38]. In this new analysis recent calculations of the reactor neutrino 	ux [39, 40]
were used.

3. In the calibration experiments, performed with radioactive sources by the GALLEX [41]
and SAGE [42] collaborations. In these experiments a deˇcit of νe's was observed.

In order to interpret these data in terms of neutrino oscillations, it is necessary to assume,
that, in addition to the 	avor neutrinos νe, νμ, ντ , sterile neutrinos exist as well.

Let us ˇrst consider 3 + 1 scheme with three close neutrino masses mi (i = 1, 2, 3)
and the forth mass m4 separated from mi by about 1 eV gap. We choose p = 1. In the

region of L/E sensitive to large neutrino mass-squared difference

(
Δm2

14L

4E
� 1

)
, we have

Δ12 � Δ13 � 0. From (11) we ˇnd in this case

P (
(−)
να →(−)

να′) = δα′α − 4|Uα4|2(δα′α − |Uα′4|2) sin2 Δ14. (49)

From this expression for
(−)
νμ →(−)

νe appearance probability,
(−)
νe →(−)

νe and
(−)
νμ →(−)

νμ disappear-
ance probabilities, we have, respectively, the following expressions:

P (
(−)
νμ →(−)

νe) = sin2 2θeμ sin2 Δ14, (50)

P (
(−)
νe →(−)

νe) = 1 − sin2 2θee sin2 Δ14, (51)

P (
(−)
νμ →(−)

νμ) = 1 − sin2 2θμμ sin2 Δ14. (52)

Here

sin2 2θeμ = 4|Ue4|2|Uμ4|2,
sin2 2θee = 4|Ue4|2(1 − |Ue4|2), (53)

sin2 2θμμ = 4|Uμ4|2(1 − |Uμ4|2).

Notice that the global analysis of all short-baseline neutrino data [43,44] revealed the incon-
sistency (tension) of existing short-baseline data.

Let us consider a more complicated 3 + 2 scheme with two masses m4 and m5 separated
from three close masses mi (i = 1, 2, 3) by about 1 eV gaps. We choose p = 1. In the
region of L/E sensitive to large neutrino mass-squared differences Δm2

14 and Δm2
15, we

have Δ12 � Δ13 � 0. From (11) we ˇnd the following expression for
(−)
νl (l = e, μ) survival

probability:

P (
(−)
νl →

(−)
νl) = 1 − 4 |Ul4|2(1 − |Ul4|2) sin2 Δ14 − 4 |Ul5|2(1 − |Ul5|2) sin2 Δ15 +

+ 8 |Ul5|2|Ul4|2 cos (Δ15 − Δ14) sin Δ15 sin Δ14. (54)
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For the probability of the transitions
(−)
νl →

(−)
νl′ , l′ 	= l, we ˇnd

P (
(−)
νl →

(−)
νl′) = 4|Ul′4|2|Ul4|2 sin2 Δ14 + 4|Ul′5|2|Ul5|2 sin2 Δ15 +

+ 8 Re (Ul′5U
∗
l5U

∗
l′4Ul4) cos (Δ15 − Δ14) sin Δ15 sinΔ14 ±

± 8 Im (Ul′5U
∗
l5U

∗
l′4Ul4) sin (Δ15 − Δ14) sin Δ15 sin Δ14. (55)

CONCLUSIONS

Discovery of neutrino oscillations is one of the most important recent discoveries in
particle physics. After the ˇrst stage of investigation of this new phenomenon, now with
the measurement of the small parameter sin2 θ13 � 2.5 · 10−2 the era of precision study has
started. Such fundamental problems of neutrino masses and mixing as

• what is the ordering of neutrino masses (normal or inverted),
• what is the value of the CP phase δ,
• what are precise values (with accuracies better than 1%) of other oscillation parameters,
• is the number of massive neutrinos equal to the number of 	avor neutrinos (three) or

larger than three (do sterile neutrinos exist)
are planned to be solved by future neutrino oscillation experiments.

At the moment there is no consensus in deˇnition of the large (atmospheric) neutrino mass-
squared difference: in various experimental and theoretical papers this parameter is deˇned
differently. Today it is not so important but with future precision different ©atmospheric
mass-squared differencesª will be distinguishable. We believe that a universal deˇnition must
be accepted.

In this paper, for the general case of n-neutrino mixing we propose a convenient expres-
sion for neutrino transition probability in vacuum, in which the unitarity of the mixing matrix
is fully employed and freedom of the common phase is used. As a result, only indepen-
dent quantities (including mass-squared differences) enter into expression for the transition
probability.

On the basis of the proposed expression, we discuss the problem of the atmospheric
neutrino mass-squared difference and comment on the possibility to reveal the character of
the neutrino mass spectrum in future reactor neutrino experiments.

Acknowledgements. The author is grateful to A.Olshevskiy and C.Giunti for useful
discussions.
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