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DETECTION OF THE Z ′ BOSON AT THE ILC

V. V. Skalozub 1, I. V. Kucher 2

Dnipropetrovsk National University, Dnipropetrovsk, Ukraine

Integral one- or two-parameter observables for detecting the Abelian Z′ gauge boson in e+e− →
μ+μ−(τ+τ−) process at the ILC energies are proposed. They are based on the differential cross section
of deviations from the Standard Model predictions calculated with a low-energy effective Lagrangian
and taking into consideration the relations between the Z′ couplings to the fermions derived before. The
observables with 0.99 efˇciency ˇt the axial-vector a2

Z′ , the product of vector couplings vevμ(vevτ ),
and the mass mZ′ . Determination of the basic Z′ model is discussed.

�·¥¤² £ ÕÉ¸Ö ¨´É¥£· ²Ó´Ò¥ μ¤´μ- ¨ ¤¢ÊÌ¶ · ³¥É·¨Î¥¸±¨¥ ´ ¡²Õ¤ ¥³Ò¥ ¤²Ö ¤¥É¥±É¨·μ¢ ´¨Ö
 ¡¥²¥¢  ± ²¨¡·μ¢μÎ´μ£μ Z′-¡μ§μ´  ¢ ¶·μÍ¥¸¸¥ e+e− → μ+μ−(τ+τ−) ¶·¨ Ô´¥·£¨ÖÌ Ê¸±μ·¨É¥²Ö
ILC. �´¨ μ¸´μ¢ ´Ò ´  ¤¨ËË¥·¥´Í¨ ²Ó´ÒÌ ¸¥Î¥´¨ÖÌ μÉ±²μ´¥´¨° μÉ ¶·¥¤¸± § ´¨° ‘É ´¤ ·É´μ°
³μ¤¥²¨, · ¸¸Î¨É ´´ÒÌ ¸ ¶μ³μÐÓÕ ÔËË¥±É¨¢´μ£μ ´¨§±μÔ´¥·£¥É¨Î¥¸±μ£μ ² £· ´¦¨ ´ , ¸ ÊÎ¥Éμ³ ¶μ-
²ÊÎ¥´´ÒÌ · ´¥¥ ¸μμÉ´μÏ¥´¨° ³¥¦¤Ê ±μ´¸É ´É ³¨ ¸¢Ö§¨ Z′ ¸ Ë¥·³¨μ´ ³¨. � ¡²Õ¤ ¥³Ò¥ ¸ ÔË-
Ë¥±É¨¢´μ¸ÉÓÕ 0,99 Ë¨É¨·ÊÕÉ ±¢ ¤· É  ±¸¨ ²Ó´μ-¢¥±Éμ·´μ° ±μ´¸É ´ÉÒ ¸¢Ö§¨ a2

Z′ , ¶·μ¨§¢¥¤¥´¨¥
¢¥±Éμ·´ÒÌ ±μ´¸É ´É ¸¢Ö§¨ vevμ(vevτ ) ¨ ³ ¸¸Ê mZ′ . �¡¸Ê¦¤ ¥É¸Ö É ±¦¥ μ¶·¥¤¥²¥´¨¥ ¡ §μ¢μ°
³μ¤¥²¨ ¤²Ö Z′-¡μ§μ´ .

PACS: 14.70.Pw

INTRODUCTION

Nowadays searching for new heavy particles beyond the energy scale of the Standard
Model (SM) is established on the basis of experimental data accumulated at hadron colliders
such as the Tevatron and the LHC. Further experiments will be continued at the ILC having
energies of ∼ 500−1000 GeV in the center-of-mass of beams, but much better precision of
measurements due to point-like structure of leptons and experiments with polarized initial and
ˇnal fermions.

One of the expected heavy particles is the Abelian Z ′ gauge boson which is related with
an additional Ũ(1) group. A detailed description of the Z ′ is given in [1Ä4]. Searches for this
particle have been already established within the data of the LEP experiments in either model-
dependent [5] or model-independent [8] approaches and the Tevatron data [10, 11]. Modern
model-dependent estimates predict that the mass mZ′ is larger than 2.5−2.9 TeV [12,14]. So,
at the future ILC experiments the Z ′ will be investigated as the virtual far from resonance state.
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At present about a hundred Z ′ models are discussed in the literature. They cover either
the Abelian Z ′ or the other type of massive neutral vector particle. In the present paper, we
deal only with the former case. In model-dependent searches noted, the most popular models,
such as LR, ALR, χ, ψ, η, BÄL, SSM, have been investigated and the Abelian Z ′ mass
has been estimated. These models are also used as benchmarks in introducing the effective
observables for future experiments at the ILC [15,16].

Recent investigation of perspective variables for identiˇcation of the Z ′ models [16], in
particular, allows us to conclude that a model-independent approach is also very desirable.
An important feature of this method is that not only the Z ′ mass but also the couplings to the
SM fermions are unknown parameters which must be ˇtted in experiments. These couplings
are usually considered as independent arbitrary numbers. However, this is not the case and
they are correlated parameters, if some requirements, which this model has to satisfy, are
assumed. For instance, we could believe that the basic model is a renormalizable one. Hence,
correlations follow and the amount of free low-energy parameters reduces. Moreover, after
discovery of the Higgs boson with not heavy mass mH = 126 GeV this requirement and
hence the accounting for scalar particles became reasonable in experimental data analysis.
This type of analysis is in between the standard model-dependent and model-independent
methods. In what follows, we search for the Abelian Z ′ boson coming from an extended
renormalizable model and containing one or two Higgs doublet SM as a subgroup. There
are numerous models of such type. In particular, all E6 motivated models and the ones
mentioned above belong to this class. In general, the renormalizability requirement admits
two sets of correlations between the low-energy couplings [18]. The ˇrst set is applied in what
follows (Eq. (4)). The second one corresponds to a massive neutral vector particle interacting
only with left-handed fermion species. It covers the other class of models where the SM is
not a subgroup (see, for example, [20]). Searches for a particle of this type require other
observables and separate analysis. For more details, see [18,19].

In the present paper, we search for the Abelian Z ′ by analyzing the deviations of the
differential cross sections for the process e+e− → μ+μ−(τ+τ−) from the SM predictions
considered at center-of-mass energies 500Ä1000 GeV. We introduce the integral observables,
A(E, mZ′) (6), giving a possibility for estimating both the axial-vector coupling of the
Abelian Z ′ to the SM fermions aZ′ and the mass mZ′ , and the V (E, mZ′) (9), for ˇtting the
products of vector couplings vevμ, vevτ and the mass mZ′ . Our analysis is carried out on the
basis of the effective low-energy Lagrangian [6,7] describing the interactions of the Z ′ with
the SM fermions. At given energies and expected particle masses, distinguishable properties
of the factors at couplings entering the cross section are observed that gives a possibility for
introducing the announced observables. Their values can be used in subsequent determination
of the basic Abelian Z ′ model.

1. CROSS SECTION FOR THE Z ′ DETECTIONS

In what follows, for deˇniteness, we concentrate on the case of one-doublet SM, as it is
usually considered in the analysis of the present day experiment data. At low energies, the
Z ′ boson can manifest itself as virtual intermediate state through couplings to the SM fermions
and scalars. Moreover, the Z boson couplings are also modiˇed due to a ZÄZ ′ mixing. As
is known (see reviews [2, 4, 8]), signiˇcant signals beyond the SM can be inspired by the
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couplings of renormalizable types. They can be described by adding new Ũ(1)-terms to
the electroweak covariant derivatives Dew in an effective low-energy Lagrangian [6, 7] (see
also [8]). In this approach, the ZÄZ ′ mixing angle θ0 is determined by the coupling Ỹφ

describing the coupling of the Ũ(1) gauge boson with the scalar doublet ˇeld as follows:

θ0 =
g̃ sin θW cos θW√

4παem

m2
Z

m2
Z′

Ỹφ + δ, (1)

where θW is the SM Weinberg angle, αem is an electromagnetic ˇne structure constant and
δ ∼ O(m4

Z/m4
Z′). Although the mixing angle is a small quantity of the order m−2

Z′ , it
contributes to the Z boson exchange amplitude and has to be accounted for in general. The
effective Lagrangian of interactions between the fermions and the Z and Z ′ mass eigenstates
reads (see, for example, [8]):

LZf̄f =
1
2
Zμf̄γμ

[
(vSM

fZ + γ5aSM
fZ ) cos θ0 + (vf + γ5af ) sin θ0

]
f, (2)

LZ′f̄f =
1
2
Z ′

μf̄γμ
[
(vf + γ5af ) cos θ0 − (vSM

fZ + γ5aSM
fZ ) sin θ0

]
f, (3)

where f is an arbitrary SM fermion state; vSM
fZ , aSM

fZ are the SM couplings of the Z boson.
As it occurs, if the extended model is renormalizable and contains the SM as a subgroup,

the relations between the couplings hold ([8, 17,18]):

vf − af = vf∗ − af∗ , af = T3f g̃Ỹφ. (4)

Here f and f∗ are the partners of the SU(2)L fermion doublet (l∗ = νl, ν∗ = l, q∗u = qd,
and q∗d = qu), T3f is the third component of weak isospin. They can be also derived the
other way Å by imposing the requirement of invariance of the SM Yukawa term with respect
to the Ũ(1) gauge transformations [9]. Therefore, the relations (4) are independent of the
number of scalar ˇeld doublets.

The couplings of the Abelian Z ′ to the axial-vector fermion current have a universal
absolute value proportional to the Z ′ coupling to the scalar doublet. Then, the ZÄZ ′ mixing
angle (1) can be determined by the axial-vector coupling. Because of the universality, we
will write in what follows a instead of af .

The relations (4) essentially in	uence the kinematics of scattering processes and give a
possibility to uniquely detect the virtual Abelian Z ′ boson.

Let us consider the process e+e− → l+l− (l = μ, τ ) with the nonpolarized initial and
ˇnal fermions. The beam polarization is not very important for our consideration and will
be discussed below. Two classes of diagrams have to be taken into consideration. The
ˇrst one includes the pure SM graphs. This part should be calculated as accurately as
possible. The second class includes heavy Z ′ boson as the virtual state described by the
effective Lagrangian (2) and the scalar particle contributions. We assume that the Z ′ is
decoupled and not excited inside loops at the ILC energies. The tree-level diagram e+e− →
Z ′ → l+l− deˇnes a leading contribution to the cross section. It is enough to take into
account this diagram to estimate the Z ′ signals. The cross section includes the contribution
of the interference of the SM amplitudes with the Z ′ exchange amplitude (having the order
∼ a2, vfa) and the squared of the latter one (of the order ∼ a4, v4

f ). Since the couplings of
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the Z ′ are small, the last contribution can be neglected at far from the Z ′ resonance energies.
In our calculations, radiative corrections are incorporated with the Z ′-exchange diagram in
the improved Born approximation and the relations (4).

Within these assumptions, the deviation of the differential cross section for the process
e+e− → μ+μ− (τ+τ−) can be presented in the form

Δσ(z) =
dσ

dz
− dσSM

dz
= fμμ

1 (z)
a2

m2
Z′

+ fμμ
2 (z)

vevμ

m2
Z′

+ fμμ
3 (z)

ave

m2
Z′

+ fμμ
4 (z)

avμ

m2
Z′

, (5)

where z = cos θ of scattering angle θ. Equation (5) is our deˇnition of the Z ′ signal. This
cross section accounts for the relations (4) through the known dimensionless functions f1(z),
f3(z), f4(z), since the mixing angle θ0 is substituted by the axial-vector coupling a.

2. ESTIMATION OF a2 AND mZ′

According to Eq. (5), the deviation Δσ(z) is described by four factors fi(z). Let us
investigate their behavior assuming that couplings a, vf have the same order of magnitude. In
this case the kinematics properties of fi(z) can be elucidated. To realize that, we have used
the packages FeynArts [21], FormCalc and LoopTools [22], and Mathematica. The results of
calculations are gathered in Appendix.

For deˇniteness, in the Figure we show the behavior for energy E = 500 GeV in the
e+e− center-of-mass and the mass mZ′ = 2500 GeV. Here, some remark is needed. As
was reported in [12Ä14], the lower bound on the mass mZ′ obtained from the data on the

Fig. 1. Behavior of factors f1(z), f2(z),

f3,4(z) for mZ′ = 2500 GeV, width ΓZ′ =

250 GeV for energy E = 500 GeV

DrellÄYan process at the LHC is mZ′ �
2.5−2.9 TeV. It was estimated assuming the nar-
row resonances having the widths ΓZ′ of the order
ΓZ′/mZ′ ∼ 0.01. On the other hand, as was ar-
gued in [10], the resonances with not small ΓZ′

are not excluded. They could considerably decrease
the value of the lower bound on mZ′ . Below, to
present the results, we take the ratio ΓZ′/mZ′ ∼ 0.1
(the results for narrow resonance are similar).

In the plot, the function f1(z) is presented as
solid line, the f2(z) is shown as dashed line, and
the functions f3,4(z) are shown as dotted line. The
f3,4(z) coincide at high energies when one can ne-
glect fermion masses. The function f1(z) has op-
posite signs for the forward and backward beams.

This is in contrast to the factors f2(z) and f3,4(z). The former is negative and the lat-
ter is positive. Moreover, the factors f3,4(z) are suppressed by two orders of magnitude
as compared to the f1(z) and f2(z). The shown angular dependence is typical and takes
place in the wide mass interval and for other energies, for example, 1000 GeV. The mass
interval 1.5 � mZ′ � 4 TeV was investigated. This behavior makes reasonable introducing
the integral observable which picks out the contribution coming from the ˇrst a2-dependent
term in Eq. (5). Really, we can integrate f2(z) in the intervals −1 < z < −0.2 (where
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the function f1(z) is positive) and −0.2 < z < z∗ (where f1(z) is negative) and specify

the limit z∗ in such a way that the difference turns to zero:

(
−0.2∫
−1

−
z∗∫

−0.2

)
fμμ
2 (z) dz = 0.

Since f2(z) is a deˇnite sign, this point always exists. At the same time, due to opposite
signs of f1(z) in these intervals and sign deˇniteness of f3,4(z), the difference is mainly
determined by the ˇrst term in (5). The partial cancelation of the contributions coming
from f3,4(z) takes place. As a result, the value of the universal coupling constant a2 can be
estimated with high accuracy. As explicit calculations showed, the upper limit of integration
equals to z∗ = 0.489 for a wide interval of both the mass mZ′ and beam energies E. It is also
important that the function f1(z) changes its sign at the point z = −0.2 for all energies and
masses investigated. On these grounds we introduce the observable for model-independent
estimation of the a2 and mZ′ :

A(E, mZ′) =

⎛
⎝ −0.2∫

−1

−
z∗∫

−0.2

⎞
⎠ (

dσ

dz
− dσSM

dz

)
dz. (6)

Here, the lower and upper limits of integration are theoretical bounds. They can be substituted
by others corresponding to the actual set up of the experiments. For example, for the lower
limit zlower = −0.9, that is close to the values of measured scattering angles, 10 < θ < 170◦,
planned for the ILC detectors [23], the upper limit is z∗ = 0.406. To complete this section,
we adduce the values of the observable (6) for the number of the mass and energy values.
In Table 1, in the ˇrst, second and third columns the energy, mass and width values (ex-
pressed in GeV) are given, correspondingly. In the fourth column the contribution coming
from fμμ

1 (z) is adduced. In the ˇfth and sixth columns the values of the contributions com-
ing from the factors fμμ

3,4(z), fμμ
2 (z) of Eq. (5) are shown. As we see, the contributions coming

from the factors fμμ
2,3,4 are two orders less compared to the contribution from fμμ

1 (z) and
can be neglected. In this way we obtain the two-parameter observable for estimation of a2

and mZ′ . Since the contribution of the factor f2(z) is chosen to be zero, A(E, mZ′ ) is
determined by two couplings: a2 and avμ. The efˇciency of the observable is determined
from the relation

κA =
|fμμ

1 |
|fμμ

1 | + |fμμ
3,4 |

. (7)

Here the quantities |fμμ
i |, i = 1, 3, 4, mark the integrals

(
−0.2∫
−1

−
z∗∫

−0.2

)
fμμ

i (z) dz > 0. From

Table 1 it can be estimated as κA = 0.9896 for all the given energy and mass values.

Table 1. Observable A(E,mZ′) for the interval [−1, 0.489]. Energy, mZ′ , and ΓZ′ are given in GeV

Energy mZ′ ΓZ′ f1(z) f3,4(z) f2(z)

500 2500 250 9.03452 · 10−7 −9.48604 · 10−9 4.93451 · 10−10

500 3000 300 8.55036 · 10−7 −8.97772 · 10−9 4.67504 · 10−10

1000 2500 250 1.96179 · 10−6 −2.058 · 10−8 −3.67104 · 10−9

1000 3000 300 1.3263 · 10−6 −1.39139 · 10−8 −2.4791 · 10−9
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The signature of the observable is also important. The coupling a2 is positive and the
integral |fμμ

1 | is also positive by construction. So, the positivity of the A(E, mZ′) is the
distinguishable signal of the Z ′ boson.

3. OBSERVABLE FOR ESTIMATION OF mZ′

Interesting application of the observable A(E, mZ′) (6) is related with the model-indepen-
dent determination of the mass mZ′ . Really, the observable (6) includes the factor a2 which

is canceled in the ratio Rexp
A =

A(E1, mZ′)
A(E2, mZ′)

, so that its behavior can be used in estimation

of mZ′ . We can consider two cross sections with close energies E1 and E2 = E1 + ΔE
and write

Rexp
A =

A(E1, mZ′)
A(E2, mZ′)

= 1 − ∂ ln A(E1, mZ′)
∂E1

ΔE. (8)

As a theoretical curve Rth
A , the function fμμ

1 from Eq. (5) has to be substituted in Eq. (8)
instead of A(E1, mZ′), because contributions of all other form-factors are suppressed in the
difference. As a result, we obtain the observable dependent only on mZ′ . Hence, the value
of the mass can be estimated by using a standard χ2 method.

4. ESTIMATION OF vevμ (vevτ )

The behavior of the factors shown in the Figure gives also a possibility of introducing the
observable for model-independent determination of the product vevμ(vevτ ). As we see from
the plots and Table 1, the contributions of the factors standing at avμ and ave are suppressed
and can be neglected. So, to exclude the contribution of the a2-dependent term we have
to integrate the differential cross section Δσ(z) (5) over z in the interval −1 � z � zv

and select the upper limit from the requirement
zv∫
−1

fμμ
1 (z) dz = 0. Hence, we obtain the

observable Veμ(E, mZ′) for estimation of vevμ (or vevτ ):

Veμ(E, mZ′) =

zv∫
−1

(
dσ

dz
− dσSM

dz

)
dz, (9)

where the limit zv depends on the energy E and mass mZ′ .
Let us adduce the values of zv and Veμ(E, mZ′) for a number of energy and mass values.
In Table 2, the ˇrst three columns show the center-of-mass energy, mass, and width, as

in Table 1. In the fourth column the cosine of boundary angles is adduced. In the last
two columns the corresponding values of Veμm2

Z′ and the contributions of the factor at the
product avμ are presented. As above, these limits can be substituted by other necessary
ones. The contributions of the factors ∼ ave, avμ are negligibly small and can be omitted
in the total.
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Table 2. Upper limit zv and the value Veμ(E, mZ′). Energy, mZ′ , and ΓZ′ are given in GeV

Energy mZ′ ΓZ′ zv Veμm2
Z′ AVeμm2

Z′

500 2500 250 0.567466 −1.50333 · 10−6 1.65644 · 10−8

500 3000 300 0.5675 −1.42282 · 10−6 1.56777 · 10−8

1000 2500 250 0.570118 −3.31411 · 10−6 3.52717 · 10−8

1000 3000 300 0.570115 −2.24064 · 10−6 2.38447 · 10−8

The efˇciency of the observable V (E, mZ′) is determined analogously to the κA (7),
according to the condition

κV =
|fμμ

2 |
|fμμ

2 | + |fμμ
3,4 |

, (10)

where now the quantities |fμμ
i |, i = 2, 3, 4, mark the integrals over the interval −1 < z < zv.

The efˇciency is estimated as κV = 0.9891. Again we obtain a very efˇcient observable.
Since the factor f2(z) is negative, the sign of the observable V (E, mZ′) depends on the

sign of the product vevμ. If this value is positive, we have a negatively deˇned observable.
As a result, we have obtained the two-parameter observable for ˇtting of the vector

coupling products vevμ, vevτ , and the mass mZ′ .

CONCLUSIONS

We have investigated the process e+e− → μ+μ−(τ+τ−) for unpolarized initial and ˇnal
fermions at the center-of-mass energies 500Ä1000 GeV and introduced the observables for
model-independent detections of the Abelian Z ′ boson. In this procedure the relations (4)
between couplings of the Z ′ to the SM fermions have been used. With accounting of (4),
the factors entering the differential cross section (5) exhibit features giving a possibility for
introducing the integral observables (6) and (9) dependent mainly on only one coupling a2,
or vevμ (vevμ), correspondingly, and the mass mZ′ . Using them, all these parameters can be
estimated within one- or two-parameter ˇts.

On the basis of these observables, the estimate of the Z ′ mass can be done. For this
purpose the data on two differential cross sections with close energies are needed. Then the
mass mZ′ can be found from the observable Rexp

A (8) related to the observable (6) or from
the similar observable Rexp

eμ related to the Veμ (9). To obtain the latter, we have to substitute

the function fμμ
1 in the theoretical expression Rth

A by the fμμ
2 from (5) and make obvious

modiˇcations in Sec. 3. The same can be done for the τ -lepton ˇnal states. As a result, the
mass mZ′ can be ˇtted by using two different factor functions, so that there are two ways of
measuring this parameter.

Let us consider the role of polarizations Pe+ , Pe− . For the s-channel processes the cross
section for polarized beams reads (see, for example, Eq. (3) in [24]):

σPe+Pe−
= (1 − Pe+Pe−)[1 − PeffALR]σun, (11)

where ALR is a left-right asymmetry, Peff = (Pe+ − Pe−)/(Pe+Pe− − 1) is an effective
polarization, and σun is a contribution of unpolarized beams. As we see, the cross sec-
tion σPe+Pe−

is proportional to the unpolarized one. The polarization-dependent factors modify
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the effective luminosity of the process that does not change qualitatively the results obtained
for unpolarized beams.

What can be veriˇed next is the family independence of vf couplings. Really, the ratio
of the Vμ and Vτ observables

Rv =
V (E, mZ′)μ

V (E, mZ′)τ
=

vμ

vτ
(12)

depends on the coupling values and has to be united in the case of the family independency.
It can be simply checked.

Thus, the signature of the observables Å positive sign of A(E, mZ′ ) and negative sign
of V (E, mZ′) Å is also the signal of the Abelian Z ′ boson.

The developed model-independent approach can be used as an additional way for detecting
the Abelian Z ′ boson at the ILC, as well as determining the model which it has to belong.
The found values of the couplings can be compared with the parameters entering speciˇc
Z ′ models. As a result, the number of perspective candidates can be considerably reduced.
This is very important because the identiˇcation reach for the Z ′ models at the LHC is
estimated as mZ′ � 2.2−2.3 TeV, whereas the nowadays lower bound is ∼ 2.5−2.9 TeV [12,
14]. So, most probably, the basic model will not be identiˇed at this collider at all. This
problem must be attacked at the ILC.

Acknowledgements. The authors are grateful to A.V.Gulov, A.A.Kozhushko, and
A.A. Pankov for fruitful discussions and suggestions.

APPENDIX

In this appendix, we adduce the expression for the SM differential cross section and the
factors fi(z, E) entering Eq. (5) and calculated in the improved Born approximation. To
realize that, we have used the packages FeynArts [21], FormCalc and LoopTools [22], and
Mathematica. The lepton masses are set to zero. For convenience, here we denote cosine of
scattering angle as x = z = cos θ and introduce the standard notations: sW = sin θW , cW =
cos θW , where θW is the Weinberg angle, α is a ˇne structure constant.

The differential cross section reads:

∂σ

∂x
= σSM + a2fμμ

1 (x) + vevμfμμ
2 (x) + avef

μμ
3 (x) + avμfμμ

4 (x). (13)

In contrast to Eq. (5), the factor m−2
Z′ is incorporated in the functions. The cross section is

measured in GeV−2.
The SM part is expressed in terms of the resonant functions fZ and fZE :

σSM =
α2π

32s4
W c4

W

{
(1 + x2)[4s4

W c4
W /E2 + fZE(1 − 4s2

W + 8s4
W )2 +

+ fZ2s2
W c2

W (1 − 4s2
W )2] + x[2fZE(1 − 4s2

W )2 + fZ4c2
W s2

W ]
}

.
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The factors are expressed in terms of the functions fZ , fZ′ , fZE , fZZ′ :

f1(x) =
−α

64s4
W c4

W m4
Z′

{
(1 + x2)[fZE4c2

W s2
W m2

Zm2
Z′(1 − 4s2

W + 8s4
W )−

− fZ′c4
W s4

W m4
Z(1 − 4s2

W )2 − fZEfZZ′s2
W c2

W (m2
Z′ + 2m2

Z(1 − 4s2
W + 8s4

W ))2] +

+ x[fZ16s2
W c2

W M2
ZM2

Z′ − fZ′8s4
W c4

W (m2
Z + m2

Z′)2 + fZE8s2
W c2

W m2
Zm2

Z′(1 − 4s2
W )2−

−fZEfZZ′2s2
W c2

W (2m2
Z + m2

Z′)(1 − 4s2
W )2]

}
, (14)

f3(x), f4(x) =
−α

64s4
W c4

W m4
Z′

{
(1 + x2)[(fZ − fZ′)4c4

W s4
W m2

Zm2
Z′(1 − 4s2

W )+

+ fZEfZZ′s2
W c2

W (m2
Z′ + 2m2

Z(1 − 4s2
W + 8s4

W ))(1 − 4s2
W )m2

Z′ +

+ fZE2s2
W c2

W m2
Zm2

Z′(−1 + 8s2
W − 24s4

W + 32s6
W )]x[−fZE4s2

W c2
W m2

Zm2
Z′(1 − 4s2

W )+

+ fZEfZZ′2s2
W c2

W m2
Z′(2m2

Z + m2
Z′)(1 − 4s2

W )]
}

, (15)

f2(x) =
−α

64s4
W c4

W m4
Z′

{
(1 + x2)[−fZ′4s4

W c4
W m4

Z′ −

− fZEfZZ′s2
W c2

W m4
Z′(1 − 4s2

W )2] − x2fZEfZZ′s2
W c2

W m4
Z′

}
. (16)

The resonant functions are

fZ =
(4E2 − m2

Z)
(4E2 − m2

Z)2 + m2
ZΓ2

Z

,

fZ′ =
(4E2 − m2

Z′)
(4E2 − m2

Z′)2 + m2
Z′Γ2

Z′
,

fZE =
E2

(4E2 − m2
Z)2 + m2

ZΓ2
Z

,

fZZ′ =
(4E2 − m2

Z′)(4E2 − m2
Z) + mZ′ΓZ′mZΓZ

(4E2 − m2
Z′)2 + m2

Z′Γ2
Z′

,

(17)

where ΓZ , ΓZ′ are the widths of the Z and Z ′ bosons.
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