
�¨¸Ó³  ¢ �—�Ÿ. 2016. ’. 13, º 5(203). ‘. 974Ä979

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…

USE OF THE HADOOP STRUCTURED STORAGE TOOLS
FOR THE ATLAS EventIndex EVENT CATALOGUE

A. Favareto1 on behalf of the ATLAS Collaboration
Universit
  di Genova and INFN, Genova, Italy

The ATLAS experiment at the LHC collects billions of events each data-taking year, and processes
them to make them available for physics analysis in several different formats. An even larger amount
of events is in addition simulated according to physics and detector models and then reconstructed and
analysed to be compared to real events. The EventIndex is a catalogue of all events in each production
stage; it includes for each event a few identiˇcation parameters, some basic non-mutable information
coming from the online system, and the references to the ˇles that contain the event in each format
(plus the internal pointers to the event within each ˇle for quick retrieval). Each EventIndex record
is logically simple but the system has to hold many tens of billions of records, all equally important.
The Hadoop technology was selected at the start of the EventIndex project development in 2012 and
proved to be robust and �exible to accommodate this kind of information; both the insertion and query
response times are acceptable for the continuous and automatic operation that started in Spring 2015.

This paper describes the EventIndex data input and organisation in Hadoop and explains the opera-
tional challenges that were overcome in order to achieve the expected performance.

PACS: 29.50.+v; 29.85.Ca; 29.85.Fj

INTRODUCTION

During LHC Run 1 (2009Ä2013), the ATLAS experiment [1] used a catalogue of all real
and simulated events in the TAGDB database. The TAGDB is implemented in Oracle, as
that was the only proven technology that could hold the impressive amount of expected data
when this project started long before the start of LHC operations. The TAGDB fulˇlled its
primary objective to satisfy the ©event pickingª use case and was also useful for checking the
completeness and consistency of data processing cycles, thus identifying production problems
that could lead to missing or duplicated events. One limitation of the TAGDB was the lack
of �exibility of the database schema, which was set prior to the start of LHC data-taking and
was hard to modify afterwards to follow the needs of the collaboration. Another limitation
was that the system could not easily add information about processing stages downstream of
AOD production (which is the data format from which analysis datasets are derived), in fact
each event is recorded several times, once for each reconstruction cycle.

In late 2012, ATLAS launched the EventIndex project to design a new system meant to
be a complete catalogue of all real and simulated data, in all processing stages [2]. The new

1E-mail: andrea.favareto@ge.infn.it



Use of the Hadoop Structured Storage Tools for the ATLAS EventIndex Event Catalogue 975

system has to scale with the requirements of Run 2 (2015Ä2018). The event recording rate
is expected to increase to 1 kHz, more than twice that for Run 1. The number of events
expected between 2015 and 2018 is about 1010. So this system has to be �exible in its
schemas to accommodate a variety of quantities to be stored that could change in the future,
use established and possibly open-source technologies and be ©easyª to develop, deploy and
operate.

THE EventIndex SYSTEM ARCHITECTURE

The main use cases that were identiˇed and analysed in the project design phase were:
• Event picking: given a list events (uniquely identiˇed by run number, event number,

trigger stream, event format and processing version), ˇnd the events and return pointers to
them to the user that issued the query, who can then use the data management tools to
retrieve them.

• Trigger checks and event skimming: the population of events that passed given triggers
and of events that passed multiple triggers can be retrieved from the event catalogue. Similarly
a trigger-based event selection can be done, retrieving the references to the selected events
and then the events themselves.

• Production consistency checks: each production cycle should be checked for com-
pleteness (the number of produced events is the same as the number of input events) and
consistency (no duplicated events).

The studies performed in 2012Ä2013 resulted in the high-level design of the new ATLAS
EventIndex catalogue [3].

In order to bring the new system into production operation as quickly as possible, it was
decided to store for each event only the information that is actually needed to satisfy the
above use cases. The project was divided into work packages that could be developed almost
independently from each other (after having deˇned the interfaces), and choosing simple and
robust technological solutions for each component. The minimal information to be stored for
each event consists of:

• Event identiˇcation: run number, event number, trigger stream, event format and
processing version. For real data, the ©luminosity blockª1 number is also stored as it can be
used to link to detector or trigger condition information. For simulated data, the ©simulation
process numberª is added to be able to uniquely identify each event.

• Trigger information: the list of trigger chains passed by the given event.
• References of the event: the GUIDs (Global Unique IDentiˇers) of the logical ˇles

that contain the given event, plus the internal pointers within these ˇles. Users can use the
GUID to ˇnd the physical ˇles containing the event by querying the ATLAS distributed data
management system Rucio [4], and the internal pointers to get the actual event and process it
in whichever way they need.

In the next paragraphs, the work packages that provide the functionality needed to operate
each stage of the EventIndex data �ow are described.

1A luminosity block is a short unit of time, during Run 1 normally one minute, during which all data-taking
conditions and calibrations are assumed to be constant.



976 Favareto A. on behalf of the ATLAS Collaboration

DATA COLLECTION

Data to be stored in the EventIndex are produced by all production jobs that run at Tier-0
or on the Grid. The EventIndex information for each permanent output ˇle is transmitted
to a central server at CERN where it is validated, reformatted and stored in the EventIndex
storage system. The architecture is based on producers of the EventIndex information on the
worker nodes where event data are processed, a messaging system to transfer this information
and asynchronous consumers that effectively insert the data in the Hadoop database [5].

The EventIndex Producers can run in the Tier-0 cluster or on any ATLAS Grid site, as
stand-alone jobs or as part of more complex work�ows. Stand-alone jobs read and extract
information from existing ˇles that were previously produced, for example, all existing Run 1
data; for the data ˇles that are currently produced, it is more convenient to run the Producer as
part of the same job that creates the event ˇles, as the last job step. In both cases, at the end
of the job, EventIndex ˇles are sent to the messaging server at CERN using the ActiveMQ [6]
messaging service with the STOMP [7] protocol. ActiveMQ was chosen as the data transport
system as it is supported by the CERN IT department and its performance and robustness has
been measured to be sufˇcient for the expected data �ow.

The EventIndex Consumer processes run in dedicated servers at CERN. They read the
messages from the ActiveMQ broker, recombine them to reconstruct the information relative
to each data ˇle and save this information in a temporary storage space. A validation process
checks that all messages have been received correctly; when all EventIndex ˇles for all jobs of
a given task have been received and validated, and the task has been completed successfully,
the EventIndex information is formatted for permanent storage.

HADOOP CORE ARCHITECTURE

NoSQL technologies offer several advantages over relational databases for applications
like the EventIndex: they scale linearly with the amount of data, there are many external
tools to optimize data storage and data searches, they use clusters of low-cost Linux servers,
including disks, and ˇnally they belong to the world of open source software, so there is
no license for the installation and use of these products. Using NoSQL technologies, it is
possible to store information for each event in a single logical record. The record is created
upon recording of the event from the online system, with initially only limited information
described before. This information can be stored as key-value pairs in NoSQL systems,
together with the internal ˇle navigation information. Out of these, the Hadoop eco-system
provides a number of data storage options and auxiliary tools that can be used to optimize
the data format in order to make the most common query types very efˇcient. As CERN
decided at the same time to support Hadoop at the system level and provide a cluster for
large applications like the EventIndex, Hadoop was naturally selected as the baseline back-end
storage system.

A few data formats were tested early on, from simple CSV ˇles in Hadoop to the extreme
opposite of dumping all data into an HBase [8] table. The selected format has the data
in Hadoop ©Mapˇleª format (©TagFilesª). The Mapˇle format is a special Hadoop storage
format where the keys are stored in an index ˇle and kept in memory for fast access, and
values are stored in standard sequential data ˇles on disk. The data can be indexed in various



Use of the Hadoop Structured Storage Tools for the ATLAS EventIndex Event Catalogue 977

ways. Some index ˇles will be created at upload, others will be added later. Index ˇles will
just have a key plus references to data ˇles.

The data are stored in collections of ©ˇlesetsª, where each collection represents an event
collection (grouping all events that have been processed by the same software version). The
TagFiles can be ˇles or directories of ˇles. A collection of TagFiles makes a TagSet, each of
which has: a master record, pointers to before/after ˇlesets (vertical partitions), slave TagFiles
(horizontal partitions) and index TagFiles.

All TagFiles are also registered in the Catalog, which is implemented as an HBase table
with three families:

• Descriptions: contains TagFiles characteristics, including deˇnition of keys and ˇelds
(schema);

• Relations: contains relations to other TagFiles;
• Attributes: contains any other information that can be manipulated.
The catalogue checks the presence and consistency of all components. This is done

nightly, with a creation of a back-up of the catalogue.
Files are organized in directories whose names are derived from the dataset name of the

indexed ˇle. In this way, the dataset information (or part of it) can be used to reduce the
search range to the minimum, making the search more efˇcient. On the other hand, Hadoop
is much more efˇcient at storing and reading large ˇles rather than many small ˇles; it is
therefore convenient to have additional representations of the data, namely, a single TagFile
for all events in a dataset, and a single TagFile for all events in a ©campaignª1. In this way,
queries can be directed by the front-end server to the data representation that is most suitable
according to the query characteristics. These additional representations need of course more
storage space but as long as it remains in the limits of tens of TB the trade-off between
additional disk space and performance is largely positive.

QUERY SERVICES

The Query Server is a web service that acts as a front-end to the storage system. It
provides a command line interface and a web interface that can be used to ˇnd and retrieve
the stored information.

The searches can be then performed in two steps: ˇrst get the reference from the index
ˇle, and then get the data, using that reference. Searches can be performed using keys, with
immediate results (the primary keys consist of RunNumber-EventNumber pairs), or with full
searches on ˇle-based data with MapReduce (these queries require 1Ä2 min for typical event
collection).

As expected, the response time of different queries differs substantially for queries that
are satisˇed by the internal catalogue and those that need to launch a MapReduce task, and
the measured times are approximately proportional to the amount of data to be searched (read
in from disk) and the amount of data to be retrieved (written to the output ˇle). Taking
as reference a dataset with 123.5 million events, simple RunNumber-EventNumber searches

1A ©campaignª in ATLAS data processing is the union of all datasets with the same format that contain events
recorded with the same data conditions and processed using the same software version; for example, all protonÄproton
collisions taken in 2012 at a centre-of-mass energy of 8 TeV and processed in real time at the Tier-0.



978 Favareto A. on behalf of the ATLAS Collaboration

need 30 s, counting all events almost 5 min, and retrieving all information more than one
hour (but this is not a ©normalª user query).

Access to the data is achieved by a single and simple interface for upload (copy ˇle into
HDFS and create basic structure), read (get and search), update (adding new vertical data),
index (create new indices). These interfaces are implemented in Hadoop by Java classes with
remote access and used through a Python client.

Users can request an accumulation of statistics (for example, the number of entries satis-
fying the search conditions) instead of the delivery of the full result. All results are stored
within the system and can be retrieved later. Users can also specify the required output format
and contents.

MONITORING SYSTEM

The monitoring system provides continuous information on the health and load of all
the servers involved, as well as on the data trafˇc and query response times. The EventIn-
dex monitoring system monitors the status and activities of all servers in the chain. This
monitoring includes the Hadoop and ActiveMQ servers managed by CERN-IT and the vir-
tual machines that host EventIndex services. It monitors as well the operations performed by
EventIndex processes, including the input data �ow, occupancy of the buffers, query rates and
response times, total disk space used in Hadoop, Trigger Database statistics and consistency
information.

Low-level monitoring tools were initially implemented in the CERN Service Level Sta-
tus (SLS) [9] framework and subsequently ported to the new CERN framework based on
Kibana [10].

DEVELOPMENT STATUS, DEPLOYMENT AND OPERATION

After almost two years of development and intensive testing, the deployment phase started
in Autumn 2014. The test systems were progressively made more robust and turned into
a production service. Currently (Autumn 2015) all major components exist and work satis-
factorily. Run 2 data now �owing automatically and continuously from Tier-0/Grid and are
available almost in real time.

• Data collection: producer transformation runs at Tier-0 and on the Grid. Consumer
reads data from the ActiveMQ servers, validates them and stores to HDFS.

• Storage system: data organization in Hadoop and indexing in catalogue; trigger decoding
interface.

• Query system: CLI and web interfaces. Also EventLookup service for event picking.
• Monitoring: system level monitoring in the new CERN Kibana environment.
Filling the EventIndex started in January 2015, with Run 1 data. It was decided to index

ˇrst all Tier-0 productions (which give also the references to RAW data) and then the last
version of reprocessed data, discarding all intermediate reconstruction versions, as they are
no longer of interest. This operation needed the recall of large amounts of data from tape at
CERN and all Tier-1 centers, which determined the ˇlling rate and at the same time prevented
stressing any of the hardware or software components of the EventIndex. The Tier-0 data



Use of the Hadoop Structured Storage Tools for the ATLAS EventIndex Event Catalogue 979

collection was completed in April 2015, whereas the data collection from reprocessed data at
Tier-1s started on the Grid but, having lower priority than other ATLAS computing activities,
is still in progress (September 2015), but almost ˇnished. Run 1 data consist of about 6
billion events, which correspond to approximately 2 TB of EventIndex data (single version,
before replication). The size after the internal replication in Hadoop is about 6 TB.

CONCLUSIONS AND OUTLOOK

The ˇrst ideas leading to the EventIndex project were discussed in ATLAS in Autumn
2012. Two and a half years later, the EventIndex exists and the deployment phase, including
back-ˇlling it with all Run 1 data, is almost completed. All fundamental building blocks
perform as expected. Work is in progress to turn deployment into completely automated
operations, including more automatic data validation, increased robustness against network
problems and hardware failures, additional internal monitoring, and performance (timing)
improvements for common queries. This work is expected to be completed during 2015; after
that time the monitoring tools will be robust enough to be used by general computing shifters
and the active work by experts will be reduced to occasional advice and interventions in case
of problems.

REFERENCES

1. ATLAS Collab. The ATLAS Experiment at the CERN Large Hadron Collider // JINST. 2008. V. 3.
P. S08003; doi:10.1088/1748-0221/3/08/S08003.

2. Barberis D. et al. on behalf of the ATLAS Collab. The Future of Event-Level Information Repositories,
Indexing, and Selection in ATLAS // J. Phys. Conf. Ser. 2014. V. 513. P. 042009; doi:10.1088/1742-
6596/513/4/042009.

3. Barberis D. et al. on behalf of the ATLAS Collab. The ATLAS EventIndex: An Event Catalogue
for Experiments Collecting Large Amounts of Data // J. Phys. Conf. Ser. 2014. V. 513. P. 042002;
doi:10.1088/1742-6596/513/4/042002.

4. Garonne V. et al. on behalf of the ATLAS Collab. Rucio Å The Next Generation of Large Scale
Distributed System for ATLAS Data Management // J. Phys. Conf. Ser. 2014. V. 513. P. 042021;
doi:10.1088/1742-6596/513/4/042021.

5. Hadoop. http://hadoop.apache.org.

6. ActiveMQ. http://activemq.apache.org.

7. STOMP. http://stomp.github.io.

8. HBase. http://hbase.apache.org.

9. Lopienski S. Service Level Status Å A New Real-Time Status Display for IT Services // J. Phys.
Conf. Ser. 2008. V. 119. P. 052025; doi:10.1088/1742-6596/119/5/052025.

10. Kibana. https://www.elastic.co/products/kibana.


