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APPLICATION OF CLUSTER ANALYSIS
AND AUTOREGRESSIVE NEURAL NETWORKS

FOR THE NOISE DIAGNOSTICS
OF THE IBR-2M REACTOR
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The pattern recognition methodologies and artiˇcial neural networks were used widely for the
IBR-2M pulsed reactor noise diagnostics. The cluster analysis allows a detailed study of the structure
and fast reactivity effects of IBR-2M, and nonlinear autoregressive neural network (NAR) with local
feedback connection allows one to predict slow reactivity effects. In this paper, we present results of a
study on pulse energy noise dynamics and prediction of liquid sodium 
ow rate through the core of the
IBR-2M reactor using cluster analysis and an artiˇcial neural network.

PACS: 84.35.+i

INTRODUCTION

The pulse energy noise of the IBR-2M reactor is caused by the operation of various
technological systems, including the reactor core cooling system and the moving re
ectors.
Owing to the high sensitivity of the reactor to reactivity perturbations, the total pulse energy
noise may reach ±22% in the stabilization mode. These noises directly affect the safety as
well as the reliability of reactor operation. The goal of this work is to investigate the dynamics
of the pulse energy noise at the IBR-2M during a reactor cycle and to predict liquid sodium

ow rate through the core.

BRIEF DESCRIPTION OF THE IBR-2 REACTOR AND EXPERIMENTAL DATA

The IBR-2M reactor is located at the Joint Institute for Nuclear Research (Dubna, Russia)
and operates with the design power of 2 MW. The IBR-2M core capacity is 69 fuel elements,
which are sleeve-like PuO2 pellets. The coolant is liquid sodium, pumped through the
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Fig. 1. Cross-sectional view of the IBR-2M core: 1 Å emergency protection blocks; 2 Å compensation
block; 3 Å intermediate control block; 4 Å automatic regulator; 5 Å stationary re
ector; 6 Å moving

re
ector jacket; 7 Å grooved water moderators; 8 Å external neutron source; 9 Å MMR; 10 Å AMR;

11 Å 
at water moderator

emergency protection blocks by two induction pumps. There are two aligned blades rotating
with different speeds past one of the core faces. They are the main moving re
ector (MMR)
and the auxiliary moving re
ector (AMR) of the reactivity modulator. The reactivity level is
adjusted by the control and protection system (CPS) elements, which are movable tungsten
blocks in an array of ˇxed steel re
ectors. The arrangement of the CPS elements with respect
to the IBR-2M core is shown in Fig. 1. The reactor core is surrounded by water moderators
for thermal neutron users.

Pulse energy amplitudes were investigated via measurements with three independent de-
tectors arranged around the core. Hence, the current pulse integral was measured for verifying
the main measurements. Each successive power pulse was measured in one of the typical
reactor cycles with the sodium 
ow rate through the core equal to 100 m3/h. The measure-
ments were carried out for 10.5 days, beginning with the moment when the reactor reached
the power of 2 MW and ending when the power was dropped at the end of the cycle. The
recorded time series were about ∼ 107 successive pulse energy values, which were processed
using statistical and cluster analysis procedures. The main element of the statistical analysis
was the spread of values, and the object of the cluster analysis was the power spectrum of
pulse energy 
uctuations.

The original time series to be predicted (liquid sodium 
ow rate) are recorded within the
four days of reactor cycle. The measurement period (sampling frequency) amounted to 0.1 s.

The basic analysis procedures and results of investigation of the pulse energy noise and
sodium 
ow rate are presented below.
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CLUSTER ANALYSIS OF THE PULSE ENERGY NOISE

The dynamics of the pulse energy noise at the IBR-2M has been investigated using cluster
analysis. The hierarchical cluster algorithm is used here [1] as it is more 
exible than other
methods, thus allowing a detailed study of the structure and differences in values of pulse
energy noise.

Figure 2 shows the variation in the power spectrum of the IBR-2M pulse energy 
uc-
tuations during the reactor operation cycle at nominal power of 2 MW. As is evident from
Fig. 2, several high-intensity peaks are in the power spectrum. These peaks are due to the
axial (normal to core surface) vibrations of the moving re
ectors [2, 3].
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Fig. 2. Variation in the power spectrum of the IBR-2M pulse energy 
uctuations during one of the typical
reactor operation cycles at the power of 2 MW. The measurement duration is 10.5 days; 552 spectra

are presented

In the present case, the objective of the cluster analysis was to classify a great amount of
IBR-2M noise state data. Each successive power spectrum of the pulse energy 
uctuations
(hereinafter referred to as the spectrum), re
ecting the reactor noise state in the time interval
of ∼ 28 min (8192 successive pulse energy values), was represented by a point in the
multidimensional Euclidean space. The Euclidean distance between the ith and kth points is

given by dik =
[

p∑
j=1

(xij − xik)2
]1/2

. The space dimension was 256 coordinates, i.e., the

number of points in the spectrum. The cluster structures are shown in Fig. 3, ©compressedª
from the 256-dimensional to the two-dimensional space.

The power spectrum of the pulse energy 
uctuations is divided into four clusters. The
ˇrst three clusters include spectra of the transition region that lasts 1.7 days after the reactor
reaches the nominal power of 2 MW. The fourth, and main, cluster corresponds to the
stationary reactor noise established after 1.7 days when the reactor begins operating at its
nominal power. For this fourth cluster, the noise intensity varies in time, tending to decrease
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Fig. 3. Cluster structures compressed from the 256-d to the two-d space for the total pulse energy


uctuations (a) and the 
uctuations due to the axial vibrations of the moving re
ectors (b)

by ∼ 12% to the end of the cycle; this decrease in noise only slightly affects the spectral
composition of the noise. Thus, the power noise is generally stabilized in 1.7 days.

PREDICTION OF LIQUID SODIUM FLOW RATE THROUGH THE CORE
OF THE IBR-2M REACTOR

The variation in the temperature and 
ow rate of liquid sodium through the core affects
the reactivity 
uctuation and power. Reactivity 
uctuation ρG(t) by a change in sodium 
ow
rate from G0 to G(t) at time (t) can be written as follows: ρG(t) = dK/dG[G(t) − G0],

where
dK

dG
=

ΔK

ΔG

∣∣∣∣
W,T=const

is reactivity coefˇcient of sodium 
ow rate, G(t), G0 is the

current and average value of sodium 
ow rate through the core. By the small change in the
power and sodium 
ow rate (∼ 10%), the value of reactivity coefˇcient can be reduced to
the value −0.7 · 10−2 βeff/m3/h [4, 5].

Nonlinear autoregressive neural network (NAR) with local feedback connection was used
for prediction of liquid sodium 
ow rate through the core IBR-2M [6]. NAR type of
neural network with feedback connection was widely applied for noisy time series predic-
tion. The prediction results are more accurate in comparison with the common feed-forward
networks [7].

Using mathematical notation, the output of a neuron can be expressed as follows:

y = f

(
b +

∑
i

wixi

)
,

where b is the bias for neuron, f is the activation function, wi are the weights, xi is the input,
and y represents the output [5, 7, 9]. NAR uses some of past values of actual time series to
predict next values as determined by the following equation: Ĝ(t) = f(G(t − 1) + G(t −
2)+ . . . +G(t− d)), where G(t) is the input (liquid sodium 
ow rate through the core of the
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Fig. 4. Comparison between measured daily liquid sodium 
ow rate through the core of the IBR-2M
and predicted one by the proposed model NAR (a). Experimental results versus predicted data (b)

reactor); Ĝ(t) is the output (predicted values); f is an activation function; d is the feedback
delay, where the future values depend only on regressed d previous values of output signal.

The goal was to predict next two days data points from two previous days. In the
NAR training phase, LevenbergÄMarquardt method for the back-propagation algorithm was
chosen [10, 11]. The comparison results of liquid sodium 
ow rate prediction and the linear
relationship between experimental and predicted data are shown in Fig. 4. The correlation
between them is very strong (R = 0.98).

CONCLUSIONS

The result of a cluster analysis, shown as the power noise, is successively divided into
three to four stable structures (clusters). The ˇrst two clusters are observed between 0 to
14 h after the maximum power has been reached. Then, 1.2 days later, the transition region
ends, and the reactor noise state is stabilized 1.7 days after the maximum power is reached.
It is corroborated that the transition region of the reactor noise is caused by a change in the
vibration state of the moving re
ectors.

The nonlinear autoregressive neural network predicts slow changes in liquid sodium 
ow
rate up to two days with an error of ∼ 5%.

Application of hierarchical cluster analysis and nonlinear autoregressive neural network
for noise diagnostics of IBR-2M allows one to get more detailed information than standard
methods.
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