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ESTIMATION OF MAGNETIC FIELD GROWTH AND
CONSTRUCTION OF ADAPTIVE MESH IN CORNER

DOMAIN FOR MAGNETOSTATIC PROBLEM

E. E. Perepelkin, R. V. Polyakova1, A. D.Kovalenko, L. A. Nyanina,
P. N. Sysoev, M. B. Sadovnikova, I. P. Yudin
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A magnetostatic problem arises in searching for the distribution of the magnetic ˇeld generated
by magnet systems of many physics research facilities, e.g., accelerators. The domain in which the
boundary-value problem is solved often has a piecewise smooth boundary. In this case, numerical
calculations of the problem require the consideration of the solution behavior in the corner domain. In
this paper an upper estimate is obtained for the maximum possible growth of the magnetic ˇeld in the
corner domain of vacuum. Based on this estimate, we propose a method of condensing the differential
grid near the corner domain of vacuum. An example of the modeling problem calculation in the corner
domain is given.
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INTRODUCTION

Many physics research facilities use magnet systems of various conˇgurations. An exam-
ple is a system of spectrometric magnets. It is very important to know with a good accuracy
the distribution of the magnetic ˇeld generated by this system. The problem is actually re-
duced to formulation of a magnetostatic problem of ˇnding the distribution of the magnetic
ˇeld generated by the magnet system under consideration. Since the magnetic system has
a complicated conˇguration, the solution of the problem is usually sought using numerical
methods. The domain in which the boundary-value problem is solved during calculations of
a particular magnet system often has a piecewise smooth boundary. In this case the solution
of the problem or the derivative solutions can have a singularity. Therefore, the numerical
search for the solution requires the use of special methods.

1E-mail: polykovarv@mail.ru



Estimation of Magnetic Field Growth and Construction of Adaptive Mesh 1169

1. ESTIMATION OF THE MAGNETIC FIELD GROWTH

Let us show that the magnetic ˇeld in the corner domain of vacuum Ωv of a ferromagnetic
satisˇes the condition

H (s) � C0 ln
1
rs

+ w (s) , (1)

where C0 is a constant; w (s) is a bounded function, and rs is the distance to the corner and
s ∈ Ωv . The integral formulation of the magnetostatic problem [1, 2] allows the magnetic
ˇeld to be represented as (on the assumption that a solution exists)

H (s) = HC (s) −∇s

∫
Ωf

(M (p) ,∇P Ψ (s, p)) dυp, (2)

where HC is the ˇeld from the current sources, M is the ferromagnetic magnetization vector,

the function Ψ (s, p) is equal to
1

4πrsp
or

1
2π

ln rsp for the three-dimensional and the two-

dimensional case, respectively, and Ωf is the ferromagnetic domain. The magnetization
vector is deˇned as M = μ0χ (H)H = μ0 (μ (H) − 1)H, where μ0 is a constant, χ (H) is
the magnetic susceptibility, and μ (H) is the permeability of the ferromagnetic. Given high

ˇelds (H → ∞), the representation [3, 4] μ (H) = 1 +
A

H
− B

H2
when H → ∞ is valid,

where A and B are positive constants. Consequently, when H → ∞, M = |M| is limited by
a constant M0 = μ0A. Let us consider the 2D case. From (2) we obtain

H (s) = HC (s) − 1
2π

∇s

∫
Ωf

(
M (p) ,

rsp

r2
sp

)
dυp.

Here the ˇrst term is limited, and we therefore estimate the second term

∣∣∣∣∣∣∣∇s

∫
Ωf

(
M (p) ,

rsp

r2
sp

)
dυp

∣∣∣∣∣∣∣ �

∣∣∣∣∣∣∣
∫
Ωf

∂

∂xs

M (x) (p) (xp − xs) + M (y) (p) (yp − ys)
(xp − xs)

2 + (yp − ys)
2 dυp

∣∣∣∣∣∣∣ +

+

∣∣∣∣∣∣∣
∫
Ωf

∂

∂ys

M (x) (p) (xp − xs) + M (y) (p) (yp − ys)
(xp − xs)

2 + (yp − ys)
2 dυp

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
∫
Ωf

M (x)
(
x̄2 − ȳ2

)
+ 2M (y)xy

(x̄2 + ȳ2)2
dυp

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∫
Ωf

M (y)
(
ȳ2 − x̄2

)
+ 2M (y)xy

(x̄2 + ȳ2)2
dυp

∣∣∣∣∣∣∣ �

� 2
∫
Ωf

2r2
sp

∣∣M (x)
∣∣ + 2r2

sp

∣∣M (y)
∣∣

r4
sp

dυp � 8M0

∫
Ωf

1
r2
sp

dυp,



1170 Perepelkin E. E. et al.

Fig. 1. The angular sector

where x̄ = xp − xs and ȳ = yp − ys. We calculate the
integral ∫

Ωf

1
r2
sp

dυp =
∫
vδ

1
r2
sp

dυp +
∫

Ωf /vδ

1
r2
sp

dυp,

where vδ = Ωf ∩Sδ (Q) is the angular sector at the corner
point Q (see Fig. 1).

The integral over the domain Ωf/vδ will be limited,
and we therefore consider only the integral over the do-
main vδ

∫
Ωf

1
r2
sp

dυp =

ω0∫
0

dϕp

δ∫
0

rp drp

r2
p + r2

s − 2rprs cosϕsp
=

=

ω0∫
0

dϕp

⎛
⎜⎝

1∫
0

t dt

1 + t2 − 2t cosϕsp
+

δ/rs∫
1

t dt

1 + t2 − 2t cosϕsp

⎞
⎟⎠,

where t = rp/rs. Then we use the expression for the generating function [5]

1√
1 + t2 − 2t cosϕsp

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+∞∑
m=0

Pm (cosϕsp) tm, |t| < 1,

+∞∑
m=0

Pm (cosϕsp) t−m−1, |t| < 1

and obtain∫
Ωf

1
r2
sp

dυp =

ω0∫
0

dϕp

⎛
⎜⎝

1∫
0

t dt

+∞∑
m,k=0

PmPktk+m +

δ/rs∫
1

t dt

+∞∑
m,k=0

PmPkt−(k+m+2)

⎞
⎟⎠ =

= ω0 ln
δ

rs
+

+∞∑
m,k=0

αm,k

m + k + 2
+

+∞∑
m+k �=0

αm,k

m + k

((rs

δ

)m+k

− 1
)

=

= C1 ln
1
rs

+ w1 (s) , (3)

where αm,k =
ω0∫
0

Pm (cosϕsp)Pk (cosϕsp) dϕp, C1 is a constant, and w1 (s) is a bounded

function. Thus, the validity of expression (1) is ascertained.

2. METHOD OF GRID CONDENSING IN THE CORNER DOMAIN

In [6Ä8], there are examples of constructing a differential grid for some boundary-value
problems in corner domains. The main idea is to condense the differential grid or ˇnite ele-
ments for obtaining an admissible problem approximation error. This error involves integrals
over elementary domains estimated by the quantities of the form Chβ

i ‖u‖k,j , where hi is the



Estimation of Magnetic Field Growth and Construction of Adaptive Mesh 1171

diameter of the ith elementary domain or grid cell, β is a positive number, ‖u‖k,j is the norm
of the function with the kth derivative in this domain, and C is a constant independent of all
these factors. Then we can require, for example, that quantities Chβ

i ‖u‖k,j be identical in the

domain under consideration. To this end, hβ
i can be decreased in inverse proportion to ‖u‖k,j

on approach to the singular points. We demonstrate the validity of the following statement.
V (s) is the solution of the magnetostatic problem in the integral formulation found by a
numerical method and H (s) is the exact solution. Then the following estimate is valid:

‖V − H‖2
L2(D) < h2

(
c1 ln2 h + c2 ln h + c3

)
, (4)

where c1, c2, and c3 are constants and h is the diameter of the domain D, which is a
differential grid cell containing the ferromagnetic corner.

By virtue of (2), the following expression for V (s) holds:

V (s) = HC (s) − 1
2π

∇s

N∑
j=1

∫
Ωj

(
M (Hj) ,

rspj

r2
spj

)
dv, (5)

where Hj is the ˇeld in the cell Ωj , j = 1, . . . , N ;
N⋃

j=1

Ωj = Ωf ; and rspj is the distance

from the point s to the point pj ∈ Ωj . We consider the difference

V (s) − H (s) = − 1
2π

∇s

N∑
j=1

∫
Ωj

(
M (Hj) − M (H (pj)) ,

rspj

r2
spj

)
dv.

Since the quantity |M| < M0 is limited, it follows that |M (Hj) − M (H (pj))| < 2M0 for
j = 1, . . . , N . Thus, we obtain

|V (s) − H (s)| <
8M0

π

N∑
j=1

∫
Ωj

dv

r2
spj

=
8M0

π

N∑
j=1

∫
Ωj∩Sδ(Q)

dv

r2
spj

+
8M0

π

N∑
j=1

∫
Ωj/Sδ(Q)

dv

r2
spj

.

As a result, using the estimate obtained above, we arrive at the expression

|V (s) − H (s)| < C2 ln
1
rs

+ w2 (s) . (6)

It remains to estimate ‖V − H‖2
L2(D), where the domain D is the Sδ (Q) Å δ-domain of the

corner point Q. Using (6), we obtain

‖V − H‖2
L2(D) =

∫
D

|V (s) − H (s)|2 dv < h2
(
c1 ln2 h + c2 ln h + c3

)
,

where h = 2δ, and c1, c2, and c3 are constants. We propose a differential grid condensing
method

h1∫
0

∣∣∣∣ln 1
x

∣∣∣∣ dx = d0,

xm∫
xm−1

∣∣∣∣ln 1
x

∣∣∣∣
2

dx = d0, xm − xm−1 = hm, m = 1, 2, . . . , M.

Here d0 is a constant; M is the number of partitions along the coordinate axis (OX or OY )
in the corner domain; hm is the grid spacing, and xm is the coordinate of the grid node along
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the OX or OY axis (the origin of the coordinates is at the corner point), |x| < 1. In model
numerical calculation tasks with a corner point on the course, building a mesh grid of the
differential in accordance with (6) has yielded good results.

3. THE SOLENOID-TYPE MAGNETIC FIELD DETECTOR MODELING

Magnetic systems are very important parts [9, 10]. To create the necessary conˇguration
of magnetic ˇeld, the repeated solution of nonlinear boundary value problem of magnetostatics
is needed. In the present work, we consider the problem of creation of homogeneous map of
magnetic system of solenoidal type (see Fig. 2). As a result of optimization, the geometric
parameters of magnetic system were chosen in such a way so as to get maximal size of the
domain of homogeneity of the magnetic ˇeld.

Fig. 2. Magnet geometry Fig. 3. Mesh

Fig. 4. Field distribution
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Due to symmetry, in the modeling we use only 1/24 part of the geometry with corre-
sponding boundary conditions. The calculations were performed (using two software prod-
ucts: TOSCA and native MFC) by the method of ˇnite elements on tetrahedral mesh with
5 000 000 elements (see Fig. 3).

The distribution of the module of magnetic ˇeld on the surface of ferromagnetic is shown
in Fig. 4. It is seen that maximal value of magnetic ˇeld is reached in the corner points
(1.3 ’).

The density of the current in winding J = 9.956410099 · 106 A/m2. The cross section of
coil S = 0.04× 4.7 m. The total current I = 1.871805098 · 106 A. The ˇeld in the center of
magnetic system Bcenter = 0.5 T.

Fig. 5. Field homogeneity is ±0.1% Fig. 6. Field homogeneity is ±0.5%

In Figs. 5 and 6 the domains with the degrees of homogeneity of magnetic ˇeld are 0.1%
and 0.5%, correspondingly. The black continuous line shows the homogeneity of 0.1% is
needed. In Fig. 5, the scale of magnetic ˇeld has site from 0.99Ä1.001 ’, in Fig. 6 from
0.998Ä1.002 ’.

CONCLUSIONS

1. The upper estimate for the admissible growth of the magnetic ˇeld H (p) in the corner

domain of vacuum Ωv H (p) � C0 ln
1
rp

+ w (p), where C0 is a constant, w (p) is a bounded

function, and rp is the distance to the corner, is asymptotically obtained for the case of
μ (H) → 1 when H → ∞.

2. A method of condensing the differential grid in the corner domain of vacuum Ωv is
proposed, which appreciably improves the accuracy of the calculated solution.

3. As a result of optimization, the geometric parameters of the solenoid-type magnetic ˇeld
detector were chosen in such a way so as to get maximal size of the domain of homogeneity
of the magnetic ˇeld.
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