ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

К ПРОБЛЕМЕ ОПТИМИЗАЦИИ ДИНАМИКИ ЧАСТИЦ В УСКОРИТЕЛЕ С ПЕРЕМЕННО-ФАЗОВОЙ ФОКУСИРОВКОЙ

Д. А. Овсянников, В. В. Алцыбеев¹

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Предлагается новый алгоритм построения последовательности фаз синхронной частицы в ускорителе с ПФФ. Рассматривается задача оптимизации интенсивного пучка дейтронов. Приводятся результаты численной оптимизации.

A new approach based on mathematical optimization methods to obtain a synchronous phase sequence in APF linacs is suggested. The optimization problem of intensity deuteron beam parameters is discussed. As an example, the results of beam dynamics simulations are presented.

PACS: 29.27.Bd

введение

Линейные ускорители с фокусировкой ускоряющим полем давно являются частью состава любого современного ускорительного комплекса. В частности, связка из ускорителя с пространственно-однородной квадрупольной фокусировкой (ПОКФ) и ускорителя с переменно-фазовой фокусировкой (ПФФ) является хорошим решением для начальной части ускоряющего тракта на высокие энергии. В данном случае в резонатор с ПФФ инжектируется сгруппированный в структуре с ПОКФ ионный пучок. Ускоритель с ПФФ обладает высоким темпом ускорения и отсутствием магнитных фокусирующих элементов. Поэтому проблемы разработки данных ускорителей и улучшения качества пучков остаются важными и актуальными.

При разработке ускорителя такие параметры, как длина ускорителя, ток пучка, токопрохождение, эффективный эмиттанс и т.п., должны быть учтены. Улучшение этих параметров может быть достигнуто с помощью различных методов оптимизации. Таким образом, разработка линейного ускорителя на основе оптимизационного подхода может иметь широкое практическое значение.

¹E-mail: altsybeyev@gmail.com

ЭТАПЫ ОПТИМИЗАЦИИ

В наше время имеется хорошо развитая математическая теория многопараметрической оптимизации, которая может быть применена к динамике пучков [1–8]. Используя простую математическую модель динамики пучка в бегущей волне на первом этапе, с применением аналитического представления градиента функционала качества, мы можем оптимизировать последовательность фаз синхронной частицы, определяющую основные параметры пучка.

Следующим шагом является расчет геометрии резонатора, т. е. длин и радиусов трубок дрейфа и т. п. Необходимо учитывать, что использование простого приближения ускоряющего поля на первом этапе может привнести ошибки в расчет. Поэтому на втором этапе используется более точная аппроксимация ускоряющего поля в стоячей волне. Выбор длин периодов и радиусов трубок дрейфа производится с помощью генетического алгоритма оптимизации.

ОПТИМИЗАЦИЯ В БЕГУЩЕЙ ВОЛНЕ

Обозначим за L_i длину *i*-го ускоряющего периода, а за D_i — координату его центра. Тогда напряженность оси ускоряющего поля на оси можно аппроксимировать как

$$E_i(z,t) = (-1)^i E_{\max} \cos\left(\frac{\pi(z-D_i)}{L_i}\right) \cos\left(\omega t + \varphi_{0_1}\right). \tag{1}$$

Здесь E_{max} — амплитуда напряженности стоячей волны, в дальнейшем предполагаемая равномерной для всех периодов; ω — циклическая частота ускоряющего поля; φ_{0_1} — начальная фаза колебаний. Используя представление для стоячей волны (1), мы можем принять модель динамики пучка в эквивалентной бегущей волне [9]:

$$\frac{d\beta_s}{d\tau} = \alpha_{\rm tr} \sqrt{1 - \beta_s^2} \cos\left(\varphi_s(\tau)\right), \quad \frac{d\psi}{d\tau} = -2\pi \frac{\beta - \beta_s}{\beta_s},$$

$$\frac{dp}{d\tau} = \alpha_{tr} (\beta_s \cos\left(\varphi_s(\tau)\right) - \beta \cos\left(\varphi_s(\tau) + \psi\right)) + F_{\rm int},$$

$$\frac{d}{d\tau} G = -A^T G - GA, \quad A = \begin{pmatrix} 0 & 1\\ Q & 0 \end{pmatrix},$$

$$Q = \frac{\alpha_{\rm tr} \pi (1 - \beta_s^2)^{3/2}}{\beta_s} \sin\left(\varphi_s(\tau) + \psi\right) + \frac{q\lambda I}{2\pi m_0 c^3 \beta R^2}.$$
(2)

Здесь $\psi = \varphi - \varphi_s$; $p = \gamma_s - \gamma$; φ и φ_s — фазы частицы пучка и синхронной частицы; γ и γ_s — приведенные энергии частицы пучка и синхронной частицы; β_s — приведенная скорость синхронной частицы; $\tau = ct/\lambda$; $\alpha_{\rm tr} = e\lambda E_m/(2m_0c^2)$; E_m — амплитуда ускоряющего поля; λ — длина волны ускоряющего поля; матрица $G = \begin{pmatrix} S_{11} & S_{21} \\ S_{21} & S_{22} \end{pmatrix}$ описывает динамику начального эллипса в радиальной плоскости (η, κ) , где η — приведенный радиус частицы, $\kappa = d\eta/d\tau$ — расходимость радиуса. Для учета взаимодействия

в продольном направлении применяется модель «толстых дисков», согласно которой сила действия на i-ю частицу со стороны остальных N частиц определяется как [10]

$$\begin{split} F_{\text{int}_i} &= \beta_i \frac{a^2 q I \lambda^2}{2\pi d^2 R^2 m_0 c^3 d\varepsilon_0} \sum_{j=1}^N \sum_{m=1}^\infty \frac{J_1^2 \left(\nu_m \frac{R}{a}\right)}{\nu_m^4 J_1^2 (\nu_m)} \times \\ & \times \left(2g(\gamma_j (z_i - z_j)) - g(\gamma_j (z_i - z_j) + d) - g(\gamma_j (z_i - z_j) - d))\right), \end{split}$$

где d — толщина диска; a — радиус канала; ν_m — корни функции Бесселя $J_0(t)$,

$$g(x) = \operatorname{sign}(x) \left[1 - \exp\left(\frac{\nu_m}{a}|x|\right)\right].$$

Фаза синхронной частицы задается кусочно-постоянной функцией на каждом ускоряющем периоде:

$$\varphi_s(\tau) = \varphi_{s_i} \in [-\pi; \pi]$$
 при $\tau \in [\tau_i; \tau_{i+1}), \quad \tau_{i+1} - \tau_i = \frac{\varphi_{s_{i+1}} - \varphi_{s_i} + \pi}{2\pi}$

Используя модель (2), можно построить метод оптимизации последовательности фаз синхронной частицы φ_{s_i} . Для этого рассмотрим следующий функционал [11, 12]:

$$I = \int_{M_{T,u}} \left(c_1 F_1(\psi_T) + c_2 F_2(S_{11}) \right) d\psi_T \, dp_T \, dS_{11T} \, dS_{12T} \, dS_{22T}, \tag{3}$$

$$F_1 = \begin{cases} (\psi_T + \psi_1)^2, & \text{если} \quad \psi_T < -\psi_1; \\ 0, & \text{если} \quad \varphi_T \in [\psi_1, \psi_2]; \\ (\psi_T - \psi_2)^2, & \text{если} \quad \psi_T > \psi_2. \end{cases} \quad F_2 = \begin{cases} 0, & \text{если} \quad S_{11} < S; \\ (S_{11} - S)^2, & \text{если} \quad S_{11} > S. \end{cases}$$

Здесь c_1 , c_2 , ψ_1 , ψ_2 , — неотрицательные константы. Данный функционал ограничивает разброс по радиусу и фазам частиц пучка, что позволяет снизить потери частиц и уменьшить максимальный радиус пучка. Используя представление для градиента функционала (3) в случае взаимодействия [13–16], можно провести оптимизацию последовательности φ_{s_i} .

Рис. 1. Результаты оптимизации в бегущей волне. Последовательность синхронных фаз (*a*) и радиус пучка (*б*)

1216 Овсянников Д.А., Алцыбеев В.В.

Параметр	Значение
Начальная энергия, МэВ	3,45
Конечная энергия, МэВ	12,5
Рабочая частота, МГц	433
Амплитуда ускоряющего поля, кВ/см	110
Ток пучка, мА	14
Поперечный эмиттанс, см · мрад	$0,029\pi$
Продольный эмиттанс, кэВ · нс/нуклон	$1,55\pi$

Πορομοτρι	VORODUTOTO
параметры	ускорителя

На основе предложенной математической модели была проведена оптимизация закона изменения синхронной фазы (рис. 1) для ускорителя дейтронов с параметрами, представленными в таблице. Результаты оптимизации представлены на рис. 1.

РАСЧЕТ ГЕОМЕТРИИ СТРУКТУРЫ

После выбора последовательности фаз синхронной частицы рассчитываются длины ускоряющих периодов. Для этого используется итерационный алгоритм, основанный на аппроксимации (1).

Далее необходимо выбрать длины зазоров и радиусы трубок дрейфа. На данном этапе для аппроксимации ускоряющего поля используется следующая модель [17]:

$$\frac{E(z)}{E_m} = \frac{\operatorname{erf}\left(\frac{g(2z+L_{g_i})}{4R_i}\right) - \operatorname{erf}\left(\frac{g(2z-L_{g_i})}{4R_i}\right)}{2\operatorname{erf}\left(\frac{gL_{g_i}}{4R_i}\right)}.$$
(4)

Здесь erf — функция ошибок; g = 2 — параметр аппроксимации; L_{g_i} — длина *i*-го зазора; R_i — радиус трубки дрейфа. Зависимость, определяющая длины зазоров, зависит от полученной на предыдущем шаге последовательности длин периодов. Данная зависимость параметризуется согласно следующему алгоритму:

1. Строится кривая с амплитудой колебания, сниженной в p_1 раз по сравнению с кривой, определяющей длины периодов (рис. 2, *a*).

Рис. 2. Алгоритм выбора длин зазоров. Снижение аплитуды (а) и сжатие (б)

К проблеме оптимизации динамики частиц в ускорителе 1217

Рис. 3. Результаты оптимизации. Радиус пучка и радиус апертуры (а). Фазовые колебания (б)

Рис. 4. Результаты оптимизации. Поперечное распределение частиц на выходе (*a*). Продольное распределение частиц на выходе (*б*)

2. К полученной на предыдущем шаге зависимости применяется сжатие в p_2 раз.

Радиусы трубок дрейфа выбираются линейно возрастающими с каждым периодом от значения p_3 до p_4 .

Таким образом, для определения длин зазоров и радиусов трубок дрейфа необходимо выбрать четыре параметра: p_1 , p_2 , p_3 , p_4 . Для определения параметров p_1 , p_2 , p_3 , p_4 можно также воспользоваться градиентной методикой, однако в данном случае для выбора этих параметров проще использовать генетический алгоритм [18], в качестве целевой функции (fitness-функции) которого используется число потерянных частиц. Частица считается потерянной, если она отклонилась от средней энергии более чем на 5 % или если ее радиальное отклонение более чем 0,9 радиуса канала. Размер начальной популяции составляет 50–80 элементов с использованием равномерного распределения. Алгоритм сходится к нулевому значению fitness-функции за 10–20 итераций. Результаты расчета динамики пучка в оптимизированной структуре представлены на рис. 3, 4.

ЗАКЛЮЧЕНИЕ

В работе рассмотрена задача оптимизации динамики интенсивного пучка в ускорителе с ПФФ. Для нахождения основных параметров ускоряющей структуры (длин и радиусов трубок дрейфа, длин зазоров) предлагается сочетание градиентного метода и генетического алгоритма оптимизации.

1218 Овсянников Д.А., Алцыбеев В.В.

Работа выполнена при финансовой поддержке Санкт-Петербургского государственного университета (тема № 9.38.673.2013). Исследования были проведены с использованием вычислительных ресурсов Ресурсного центра «Вычислительный центр СПбГУ» (http://cc.spbu.ru).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bondarev B. et al. The LIDOS. RFQ. Designer Development // Proc. of the IEEE Part. Accel. Conf., 2001. V.4. P. 2947–2949.
- 2. Ovsyannikov D.A. et al. BDO-RFQ Code and Optimization Models // Proc. of Intern. Conf. «Physics and Control», 2005. P. 282–288.
- 3. Свистунов Ю.А. и др. Разработка малогабаритного ускорителя дейтронов для нейтронного генератора на энергию 1 МэВ // Вестн. Санкт-Петербургск. ун-та. Сер. 10: Прикл. матем. Информатика. Процессы управления. 2011. Вып. 1. С. 49–59.
- 4. Bondarev B. I., Durkin A. P., Ovsyannikov A. D. New Mathematical Optimization Models for RFQ Structures // Proc. of the IEEE Part. Accel. Conf., 1999. V. 4. P. 2808–2810.
- Ovsyannikov A. D. et al. On the Beam Dynamics Optimization Problem // Intern. J. Mod. Phys. A. 2009. V. 24, No. 5. P. 941–951.
- Ovsyannikov A. D., Ovsyannikov D. A., Chung S.-L. Optimization of a Radial Matching Section // Ibid. P. 952–958.
- Ovsyannikov D.A. et al. Beam Dynamics Optimization: Models, Methods and Applications // Nucl. Instr. Meth. A. 2006. V. 558. P. 11–19.
- Ovsyannikov A. D. et al. Application Optimization Techniques for RFQ Design // Probl. Atom. Sci. Tech. 2014. Iss. 3(91). P.116–119.
- 9. Капчинский И. М. Теория линейных резонансных ускорителей. М.: Атомиздат, 1966. 310 с.
- 10. Овсянников Д.А., Рубцова И.Д., Козынченко В.А. Некоторые проблемы моделирования интенсивных пучков заряженных частиц в линейных ускорителях. СПб.: Изд-во BBM, 2013. 144 с.
- 11. Ovsyannikov D.A., Altsybeyev V.V. Mathematical Optimization Model for Alternating-Phase Focusing (APF) Linac // Probl. Atom. Sci. Tech. 2013. Iss. 4(86). P.93–96.
- 12. Ovsyannikov D. A., Altsybeyev V. V. Optimization of APF Accelerators // Ibid. Iss. 6(88). P. 119-122.
- 13. Алцыбеев В. В. Об одной задаче оптимизации динамики пучка // Вестн. Санкт-Петербургск. ун-та. Сер. 10: Прикл. матем. Информатика. Процессы управления. 2014. № 1. С. 15–23.
- 14. Алцыбеев В. В., Овсянников Д.А. Управление пучком заряженных частиц с учетом их взаимодействия // XII Всерос. совещ. по проблемам управления ВСПУ-2014. С. 2141–2149.
- 15. Овсянников А. Д. Управление программным и возмущенными движениями // Вестн. Санкт-Петербургск. ун-та. Сер. 10: Прикл. матем. Информатика. Процессы управления. 2006. Вып. 4. С. 111–124.
- Овсянников А. Д. Управление пучком заряженных частиц с учетом их взаимодействия // Вестн. Санкт-Петербургск. ун-та. Сер. 10: Прикл. матем. Информатика. Процессы управления. 2009. Вып. 2. С. 82–92.
- Skudnova I. S., Altsybeyev V. V. IH-Type Drift Tube Structures Parameters Investigation // Proc. of the 20th Intern. Workshop on Beam Dynamics and Optimization (BDO) / Ed. by D. A. Ovsyannikov. IEEE, 2014. P. 157.
- Бороденко В. Г., Погорелов Э. В., Шпакова О. М. Аппроксимирующие выражения для полей в аксиально-симметричных бессеточных зазорах // Электрон. техн. Сер. I: Электроника СВЧ. 1973. Вып. 4. С. 44–55.
- 19. Genetic Algorithm. http://www.mathworks.com/discovery/genetic-algorithm.html (дата обращения: 31.08.2015).