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METHODS OF GEOMETRIC INTEGRATION
IN ACCELERATOR PHYSICS
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Saint Petersburg State University, Saint Petersburg, Russia

In the paper, we consider a method of geometric integration for a long evolution of the particle beam
in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This
method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices
including the nonlinear effects. The ideology of the geometric integration introduces in appropriate
computational algorithms the amendments which are necessary for preserving the qualitative properties
of maps presented in the form of the truncated series generated by the operator of evolution. This
formalism extends both to polarized and intense beams. Examples of practical applications are described.
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INTRODUCTION

Numerical simulation of nonstationary processes in any ˇeld of science and technology,
as a rule, can be reduced to the problem of solving systems of ordinary differential equations
using appropriate methods. It is known that in many applications the exact solution (or stream)
has a number of quality properties or the so-called ©geometricª properties. For example, it is
well known that the exact 	ow generated by the Hamiltonian system is symplectic, and the
property of conservatism results in only to the constancy of energy along the exact solution,
although the solution itself is changing with time. Z. Ge and J.Marsden demonstrated in [1]
that the exact energy conservation should not follow, in general, from property symplecticity.
Modern computer packages have a fairly good functionality (see, for example, [2Ä4]) and
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allow one to simulate the evolution of the particle beam in the nonlinear ˇelds. However, the
polarization of the beam is sufˇciently fully included only into the COSY Inˇnity package.
Moreover, these packages do not have ©advancedª interface, that reduces the efˇciency of
their using. We also note that the COSY Inˇnity, MAD, and many other packages are based
on the representation of the solution in the form of the Taylor series for the components of
the phase vector

xi(s) =
2n∑

k1=1

Tik1(s|s0)xk1(s0) +

+
2n∑

k1=1

2n∑
k2=1

Tik1k2(s|s0)xk1(s0)xk2(s0) + . . . , i = 1, 2n. (1)

The ©matrixª elements Tik1k2...kn...(s|s0) are generally calculated in numerical form, which
greatly reduces the possibility of parametric optimization of beam control. Similar presenta-
tions are mainly used only for numerical calculations, thereby reducing the performance and
accuracy of calculations. Indeed, numerical description does not allow realizing an effective
parametric analysis of the impact of various factors on the characteristics of the beam. In addi-
tion, the representation of (1) is not very convenient for the implementation of computational
procedures using parallel and distributed computing systems.

1. THE MATRIX FORMALISM FOR LIE ALGEBRAIC METHODS

The core of the matrix formalism is based on two well-known models of representation of
nonlinear Taylor series. The ˇrst model is based on the traditional Taylor series in the tensor
form, see [3]. The second model is based on the idea of presentation of an arbitrary power
series using the basis of the PoincareÄWitt [5]. Namely, this formalism gives us instead of
coordinatewise equality (1) the required solution of nonlinear equations of evolution sought
in the form

X(s) =
∞∑

k=1

R
1k(s|s0)X

[k]
0 , (2)

where X[k]
0 is a vector consisting of all monomials of kth order built on the elements of an

initial phase vector X0 [6]. The matrices R1k(s|s0)
(
dim R1k = (n × d[n, k]), d[n, k] =(

n+k−1
k

))
, k � 1, describe evolution changing of some initial phase vector X0 for kth order

of nonlinearities. We write the equation of evolution in matrix form [6,7]

dX
ds

=
∞∑

k=1

P
1k(s)X[k], X(s0) = X0, (3)

where P1k(s), k � 1, consist of coefˇcients of expansion of the evolution equation of the
beam into power series in the neighborhood of the reference particle. Substituting (2) into (3),
we can write the system of ODE for matrices P1k in the form

d

ds
R

1k =
k∑

j=1

P
1j(s)Rjk(s|s0), R

kk = (R11)[k], k � 1, (4)
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and introducing inˇnite matrices P∞, R∞ we can write

d

ds
R

∞ = P
∞

R
∞, R

∞ = T exp

⎛
⎝ s∫

s0

P
∞(τ) dτ

⎞
⎠ , k � 1, (5)

where the symbol T indicates the chronologically ordered exponent according to the Volterra
theory [8] or in the form of the Dayson operator [9]. It should be noted that the approach
described above can be applied quite naturally in the case of high-intensity beams, for which
we should take into account the effect of the self-ˇeld of the beam. In this case, one must use a
method of constructing self-consistent solutions at every step of integration (see [7]). It should
be noted that the matrix formalism naturally emerges both from the Taylor representation of
the solution (1) and from the Lie formalism (see, e. g., [6,10]). Each of these representations
uses information representation of the beam using the coordinates of the beam. In the
case of Taylor series, new coordinates are expressed in the form of a convergent Taylor
series, in the neighborhood of the equilibrium path. In the case of Lie formalism, we use
auxiliary homogeneous polynomials hk(X, s), which can be written using the basis of the
PoincareÄWitt as hk(X, s) = HT

k (s)X[k], X ∈ R2n. The use of phase coordinates reduces
the 	exibility of these methods, as it binds the process of building solutions to a particular
trajectory. According to matrix formalism, one can build a map using a matrix R1k(s|s0),
without regard for the speciˇc coordinates of the particles. It should be noted that in the case
of dense beams this approach is modiˇed by using the concept of self-consistent evolution
(see [7]).

Besides the usual description of a beam of particles as an ensemble of particles, we can
use the following methods to describe the beam.

1. A set of particles in phase space. Suppose that at the initial time evolution the par-
ticles beam is described by some set in the phase space G0(X) = G(X, 0), which is being
transformed into current one

G(X, s) = G0

(
M−1(s|s0) ◦ X

)
= 0.

2. The density function in phase space f(X, s):

f(X, s) = f0

((
M−1 ◦ X

))
,

which satisˇes the Vlasov equation. The above description of the particle density function
of the beam can be used in terms of matrix formalism. In particular, at the initial time for
the ellipsoidal beam we can write G0(X, ε) = XT A0X − ε, 0 < ε � 1. Next, using the
properties of the Kronecker product, we can calculate the current value G(X, s):

G(X, s) =
∞∑

k=1

∞∑
j=1

(
X[k]

)T

AkjX[j] − ε, Akj =
(
T

1k
)T

A0T
1j ,

where the matrices T1k can be evaluated according to the generalized Gauss method [7]:(
M−1 ◦ X

)[k]
=

∞∑
l=k

T
klX[l], T

kk =
(
M

kk
)−1

=
(
M

11
)−[k]

,

T
ik = −T

ii
k∑

j=i+1

M
ij

T
jk, i < k, T

ik ≡ 0, ∀j > k.
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In particular, listed equalities and property of Kronecker products (see, e.g., [11]) for envelope

matrices S11 taking into account nonlinear effects, we get S11(s) =
∞∑

l=1,k=1

R1l(s|s0)Slk(s0)×(
R1k(s | s0)

)T
, where

S
ik(t) =

∫
R2n

f(X, t)X[i]
(
X[k]

)T

dX.

For distribution functions we obtain

f(X, s) =
∞∑

k=0

F
T
k X[k], F0 = F

0
0, Fk =

k∑
l=1

(
T

kl
)T

F
0
l , ∀ k > l,

where f0(X) =
∞∑

k=0

(
F0

k

)T
X[k] is the initial distribution function.

2. GEOMETRIZATION OF TRUNCATED SERIES

In Introduction, we brie	y mentioned that the representation of the solution in the form
of power series (COSY Inˇnity, MAD, and so on) or using formalism by A.Dragt conserve
the qualitative properties inherent to the considered dynamical system. It is well known that
the equations of evolution of particles can be described in the Hamiltonian form

dX
ds

= J
∂H(X, s)

∂s
, (6)

where J = J(X, s) is the Jacobi matrix consisting of the structural functions of Poisson
manifolds respect to a local coordinate system X = = (x1, . . . ; p1, . . .)

T , and H(X, s) is the
Hamiltonian of the system. In the case of the canonical Poisson brackets we have J(X) = J0 =(

O E

−E O

)
. Let us introduce the Jacobi matrix M(X; s|s0) = ∂ (M(s|s0;H) ◦ X) /∂XT ,

then the requirement of conservation of the canonical Poisson bracket, deˇning the symplectic
structure in phase space, leads to the identity, that is, for the canonical Jacobi matrix has the
form:

M
∗(X; s|s0) J0M(X; s|s0) = J0, det M(X; s|s0) ≡ 1, ∀X ∈ R2n, ∀ s, s0. (7)

However, the property of symplecticity in practical calculations is violated, for example, due
to truncation of the series or when using the approximate numerical schemes. Namely, the
introduction of corrective amendments into the appropriate scheme that returns the prop-
erty of symplecticity is called by symplectiˇcation (or geometrization) of used computational
schemes. In particular, the COSY Inˇnity package uses a specially developed scheme sym-
plectiˇcation [12]. The process of symplectiˇcation in the MaryLie package is realized using
the other approach [10]. In the case of the matrix formalism for the return of properties
symplecticity for a certain order of nonlinearity, we must impose the requirements of sym-
plecticity to the corresponding matrices R1k, included in the corresponding expansion. To
do this, we must substitute the appropriate series in the identity (7), and after some series
of transformations, we obtain the chain of algebraic equalities. The ˇrst equation is satisˇed
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identically, and the rest should be considered as equations connecting the elements of the
corresponding matrices. In the case of restricting up to some order nonlinearity, one can ob-
tain a chain of simple linear algebraic equations with integer coefˇcients which can be easily
solved in symbolic form [7]. For example, for the case of nonlinear second-order equations
we obtain simple equalities

M
12 = M

11 ·
(

q11 q12 q13

q21 −2q11 −1
2
q12

)
,

where the elements of qik are calculated according to the approach which can be realized in
symbolic form and can be stored in a special database.

3. MULTITURN PROBLEM

In the long process of evolution, the beam passes through a series of identical sections in
a single revolution and repeats this procedure many times (more than millions of revolutions).
In other words, it is necessary to construct a map that is the N th degree of the map for
one revolution. We note that in the exponential representation of the operator Scaling and
Squaring method is used, which is currently being actively discussed in the literature (see,
for example, [10]). A similar approach has also been implemented in terms of the matrix
formalism, the essence of which can be summarized as the following steps [7].

1. We determine the type and dimension of the matrix RN according to (5) for this
problem.

2. We build RN in degree K (see [7]) symbolically according to the iterative exponenti-
ation

((
RN

)m)n
, where the total number of revolutions is equal to K = m · n.

3. For the problem under study, we calculate a particular type of matrix RN .
4. We substitute the resulting matrix in the general solution RN .
Note that the third phase may be realized in multiple exponentiations, for example,

((22)2 . . .)2. Selection of the basis for the degree of multiplicity depends on the concrete
model of the accelerator. We also note that the iterative exponentiation signiˇcantly reduces
the computation time because we use the symbolic representation of the respective degrees
of matrices. Despite the cumbersome form of these matrices, the process of calculation does
not take a lot of time and memory is due to the interactivity of exponentiation process.

CONCLUSIONS

All of the approaches and algorithms described above are checked and implemented within
the scope of JEDI collaboration for the problem of evolution of the polarized beam.

This work was supported by grant ©Development of the Theory of Mathematical Modeling
and Optimization of Beam Dynamicsª No. 9.38.673.2013.
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