ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

О ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ СВЕРХПРОВОДЯЩИХ РЕЗОНАТОРОВ ДЛЯ РЕКОНСТРУКЦИИ ПРОТОННОГО ИНЖЕКТОРА КОМПЛЕКСА «НУКЛОТРОН»

К. А. Алиев^а, С. М. Полозов^{а,1}, А. В. Самошин^а, С. Е. Топорков^а, Т. В. Кулевой^{а, б}, Г. Н. Кропачев^б, А. В. Бутенко^в, В. А. Мончинский^в, А. О. Сидорин^в, Г. В. Трубников^в

^а Национальный исследовательский ядерный университет «МИФИ», Москва

^б Государственный научный центр «Институт теоретической и экспериментальной физики» НИЦ «Курчатовский институт», Москва

^в Объединенный институт ядерных исследований, Дубна

Рассматривается возможность замены ускорителя с трубками дрейфа ЛУ-20, инжектора ускорительного комплекса «Нуклотрон», на сверхпроводящий ускоритель протонов с выходной энергией до 50 МэВ, состоящий из последовательности независимо фазируемых резонаторов и соленоидов. В статье рассмотрены результаты выбора общей структуры ускорителя и моделирования динамики пучка.

The possibility of replacement of LU-20 drift tube linac by a new superconducting linac of 50 MeV energy is discussed. Such a linac would consist of a number of independently phased cavities and focusing solenoids. Results of linac general layout development and beam dynamics simulation are presented.

PACS: 29.17.w; 29.27.Bd

введение

В статье рассматривается возможность замены ускорителя с трубками дрейфа ЛУ-20 на сверхпроводящий ускоритель протонов с выходной энергией до 50 МэВ. Ускоритель ЛУ-20 работает в качестве инжектора в синхрофазотроне и нуклотроне вот уже более 40 лет и требует модернизации или замены на новый сверхпроводящий линейный ускоритель. Замена позволит значительно повысить энергию и качество инжектируемого в основной ускоритель пучка. При реконструкции необходимо также учитывать, что создание нового линейного ускорителя потребует реконструкции канала инжекции пучка в нуклотроне, который в настоящее время позволяет транспортировать пучки ионов с энергией не более 25 МэВ.

¹E-mail: smpolozov@mephi.ru

Сверхпроводящие ускорители в настоящее время строятся по общему принципу: они состоят из последовательности независимо фазируемых резонаторов, используемых для ускорения пучков, и соленоидов или квадруполей для их фокусировки. Данный вид ускорителей хорошо отработан и используется во многих ускорительных центрах мира. В таком сверхпроводящем ускорителе имеется множество параметров, при изменении которых появляется возможность управления характеристиками выходного пучка и ускорение ионов другого типа. Линейный ускоритель, построенный на основе последовательности независимо фазируемых резонаторов, лишен нескольких недостатков: нет поворотных магнитов и, соответственно, не требуется расходовать энергию на их питание, поскольку регулировка энергии может быть обеспечена как грубо (при выключении одного или нескольких резонаторов), так и плавно, подстройкой фаз ВЧ-поля в резонаторах; ускоритель без особых сложностей может работать в непрерывном режиме, возможен контроль за размером огибающей пучка и т.д. С экономической точки зрения выгодно, чтобы ускоряющие резонаторы имели одинаковую геометрию, в противном случае резко возрастает стоимость ускорителя. Это означает, что фазовая скорость волны будет постоянной в каждом резонаторе и в такой ускоряющей системе всегда будет нарушаться принцип синхронизма, когда в любой момент времени скорость синхронной частицы равна фазовой скорости ускоряющей волны, т.е. будет возникать скольжение частиц относительно ускоряющей волны [1,2]. Величина скольжения не должна превышать некоторый допустимый предел, так как в случае большого скольжения резко снижается темп ускорения и ухудшается продольная и поперечная устойчивость пучка, падает коэффициент прохождения. При большом числе резонаторов целесообразно разделить их на несколько групп, каждая из которых состоит из идентичных резонаторов.

1. ДИНАМИКА ПРОТОННОГО ПУЧКА В СВЕРХПРОВОДЯЩЕМ УСКОРИТЕЛЕ

Во всех проектах по созданию сверхпроводящих ускорителей предполагается, что фокусировку пучка можно реализовать, разместив фокусирующие линзы (соленоиды или квадруполи) в свободные промежутки между резонаторами. Рассмотрим вариант ускоряющей системы, состоящей из периодической последовательности многозазорных резонаторов и магнитных соленоидов [1]. Исследование динамики пучка проводилось с помощью аналитических методов [1,2] и пакета программ численного моделирования BEAMDULAC-SCL [3,4], разработанных в лаборатории «ДИНУС» кафедры «Электрофизические установки» НИЯУ МИФИ. Аналитический анализ продольной и поперечной динамики модулированного пучка в случае магнитной периодической фокусировки удобно проводить, используя матричный метод [5] и усреднение по быстрым осцилляциям. В матричном методе амплитуды электрического поля в резонаторах и магнитного поля в соленоидах представляются как кусочно-постоянные функции. С помощью матриц преобразования для отдельных участков можно найти матрицу периода структуры [2]. Зная матрицу периода для продольного и поперечного движений, несложно найти параметры Флоке μ_z и μ_r и условия устойчивости продольных и поперечных колебаний частиц. Параметры ускорителя необходимо выбрать так, чтобы одновременно достигалась продольная и поперечная устойчивость пучка, т.е. когда μ_z и μ_r принимают действительные значения. Были выбраны параметры ускорителя, энергия пучка протонов в котором меняется от 1,6 МэВ (0,058 с) до 50 МэВ (0,314 с). Выбрав тип ускоряющих элементов и допустимую величину скольжения до 20%, определили, что ускоритель не-

Рис. 1. Изменение параметров Флоке для продольного движения μ_z и для поперечного движения μ_r (*a*); величина фокусирующего магнитного поля в зависимости от приведенной скорости при постоянной величине огибающей пучка (δ); частоты продольных и поперечных колебаний (s); сепаратриса для $\varphi_c = -20^\circ$ и $\rho = 0$ в собственной системе квазиравновесной частицы (z)

-	Номер группы					
Параметр	1	2	3	4	5	
β_{g}	0,072	0,105	0,15	0,217	0,314	
$W_{\rm in}$, МэВ ($\beta_{\rm in}$)	1,6 (0,058)	3,5 (0,086)	7,3 (0,124)	15 (0,177)	32 (0,255)	
$W_{\mathrm{out}},$ МэВ (β_{out})	3,5 (0,086)	7,3 (0,124)	15 (0,177)	32 (0,255)	50 (0,314)	
Скольжение Т, %	20	20	20	20	20	
% захвата частиц	99,4	99,0	100	97,7	95,2	
f, МГц	162	162	162	162	324	
λ , м	1,85	1,85	1,85	1,85	0,925	
$N_{ m gap}$	4	4	4	4	4	
φ_c, \circ	-20	-20	-20	-23	-20	
$L_{ m res}$, м	0,265	0,389	0,555	0,8	0,584	
<i>Е</i> , МВ/м	2,26	3,08	4,14	6,5	10,45	
$U_{\rm res},{ m MB}$	0,6	1,2	2,3	5,2	6,1	
$B_{ m sol}$, Тл	1,0	1,4	1,4	1,9	3,2	
$L_{ m sol}$, м	0,2	0,2	0,2	0,2	0,2	
$L_{ m gap}$,м	0,1	0,1	0,1	0,1	0,1	
$L_{ m per}$, м	0,665	0,789	0,955	1,2	0,984	
$N_{ m per}$	4	4	4	4	4	
$L_{ m group}$, м	2,66	3,16	3,82	4,8	3,396	

Таблица 1. Параметры ускорителя

обходимо разбить на пять групп резонаторов с геометрической скоростью $\beta_G = 0,072$; 0,105; 0,15; 0,217 и 0,314. Анализ условий устойчивости продольных и поперечных колебаний показал, что, например, для первой группы резонаторов устойчивость достигается при напряженности поля E = 2,26 MB/м, фазе влета $\varphi_c = -20^\circ$, длине резонатора $L_{\rm res} = 0,265$ м, величине магнитного поля соленоида B = 1 Тл и длине соленоида $L_{\rm sol} = 0,2$ м. На рис. 1, *а* показаны зависимости величин параметров Флоке для продольного и поперечного движений. На рис. 1, *б* приведен график зависимости $B_{\min}(\beta)$, которую легко найти из условия устойчивости в предположении [1], что максимальный размер огибающей пучка X_m задан на всей длине ускорителя (выбрано $X_m = 3$ мм).

Рис. 2. Поперечный и продольный эмиттансы пучка на входе в ускоритель и после 1-5-й групп ускоряющих резонаторов

1422 Алиев К.А. и др.

Видно, что в данном случае достаточно использовать соленоиды с величиной магнитного поля, не превосходящей 1 Тл.

В основе матричного подхода лежат некоторые упрощения: предположения об одноволновом характере взаимодействия частиц с высокочастотным полем и о малости амплитуд фазовых и поперечных колебаний частиц, т. е. предположение о линейном характере движения частиц и о малости прироста скорости частиц на резонатор. С помощью метода усреднения по быстрым осцилляциям можно уточнить условия устойчивости движения. Усреднение позволяет получить трехмерное уравнение движения в форме уравнения Гамильтона, в которое будет входить эффективная потенциальная функция; ее анализ позволяет найти условия поперечной фокусировки и выявить связь между продольным и поперечным движением, рассчитать аксептанс канала ускорителя. На рис. 1, *в* представлены графики зависимостей частот продольных и поперечных колебаний Ω_z и Ω_r , которые соответствуют параметрам Флоке, а на рис. 1, *е* праницы области устойчивости чивости продольных колебаний с учетом и без учета затухания.

Аналитический анализ устойчивости динамики пучка протонов для всех пяти групп резонаторов, на которые был разделен ускоритель, позволил выбрать параметры ускоряющих и фокусирующих элементов, при которых обеспечивается устойчивое движение пучка. Все выбранные параметры приведены в табл. 1. Наиболее точный результат дает моделирование динамики пучка в полигармоническом поле. На рис. 2 представлены результаты моделирования после каждой из групп резонаторов. Из рисунка видно, что пучок находится в сепаратрисе, а эмиттанс, ограничивающий 95 % частиц, не превышает радиус 3 мм. Коэффициент токопрохождения для всех групп близок к 100 %.

2. СВЕРХПРОВОДЯЩИЕ УСКОРЯЮЩИЕ РЕЗОНАТОРЫ

Для каждого диапазона частот и фазовых скоростей волны в настоящее время разработаны типы сверхпроводящих резонаторов, имеющих оптимальные характеристики (эффективное шунтовое сопротивление, минимальные коэффициенты перенапряжения по магнитному и электрическому полю и т.п.). В ускорителе, который предлагается создать в качестве замены ЛУ-200, в трех первых группах возможно использование четвертьволновых коаксиальных резонаторов (рис. 3, *a*), в четвертом и пятом — СН-резонаторов (рис. 3, *б*). Например, четвертьволновый резонатор на геометрическую скорость $\beta_g = 0.25$ будет иметь следующие параметры: высота резонатора h = 266 мм, длина центрального проводника l = 184 мм, диаметр центрального проводника $R_i = 30$ мм, диаметр внешнего проводника $R_0 = 100$ мм, расстояние между ускоряющими зазорами d = 118 мм, длина ускоряющего зазора g = 39 мм, приведенное пиковое магнитное поле $B_p/E_a = 10$ мГл/(МВ/м), коэффициент перенапряжения $E_p/E_a = 6$, фактор пролетного времени T = 0.95, эффективное шунтовое сопротивление $R_a/Q = 608$ Ом.

Параметры СН-резонаторов и их электродинамические характеристики представлены в табл. 2. Каждый из СН-резонаторов содержит пять периодов, длина которых постоянна и соответствует виду колебаний π . Ускоряющий зазор фиксирован и равен половине длины периода. Для получения равномерного распределения ускоряющего поля и оптимизации эффективного шунтового сопротивления R/Q конструкция содержит пилоны, соединяющие обечайку с крепежными стержнями трубок дрейфа. Центр каждого пи-

Рис. 3. Четвертьволновый коаксиальный резонатор (*a*) и СН-резонатор: сечение и вид трубок дрейфа и пилонов (*б*)

Таблица 2. Размеры и электродинамические характеристики СН-резонаторов

Геометрическая скорость β_{g}	0,150	0,217	0,314
Длина периода $D(\beta\lambda/2)$, мм	138,79	200,79	290,54
Длина резонатора, мм	694	1004	1453
Радиус резонатора R, мм	312	349	372
Диаметр апертуры а, мм	30	40	40
Ширина пилона, мм	80	80	80
Длина пилона, мм	530	780	1180
$E_{ m max}/E_{ m yck}$	3,6	3,4	3,6
$B_{ m max}/E_{ m yck}$, мТл/(МВ/м)	6,7	7,9	4,4
R/Q, Ом	882	873	635
Равномерность распределения			
поля E_{\min}/E_{\max} , %	95	98	97

лона смещен в продольном направлении в сторону торцевой стенки (см. рис. 3, δ). Такое расположение позволяет получить равномерность распределения амплитуд ускоряющего поля среди зазоров $E_{\min}/E_{\max} > 95\%$. Для снижения коэффициентов перенапряжения по электрическому и магнитному полям используются скругления трубок дрейфа и ребер пилонов.

ЗАКЛЮЧЕНИЕ

В результате проведения численного моделирования была выбрана ускоряющая структура ускорителя протонов, в котором энергия меняется от 1,6 МэВ (0,058 с) до 50 МэВ (0,314 с), с оптимальными параметрами участков ускоряюще-фокусирующей структуры и длиной 17,85 м (без учета дополнительной аппаратуры), при которых обеспечивается устойчивое движение и максимальный захват частиц. Коэффициент токопрохождения в этом случае близок к 100%. Рассчитаны электродинамические характеристики сверхпроводящих резонаторов, пригодных для использования в предлагаемом ускорителе. 1424 Алиев К.А. и др.

СПИСОК ЛИТЕРАТУРЫ

- Масунов Э. С., Самошин А. В. Фокусировка пучка в линейном ионном ускорителе, состоящем из периодической последовательности независимо фазируемых сверхпроводящих резонаторов // ЖТФ. 2010. Т. 80, вып. 7. С. 115–121.
- 2. Масунов Э.С., Самошин А.В. Исследование динамики пучка в линейном сверхпроводящем ускорителе тяжелых ионов // АЭ. 2010. Т. 108, вып. 2. С. 109–118.
- Masunov E. S., Plastun A. S., Samoshin A. V. Ion Beam Dynamics in Superconducting Drift Tube Linac // Problems of At. Science and Technology. Nucl. Phys. Investigations Series. 2010. No. 53. P. 114–117.
- 4. Samoshin A. V., Polozov S. M. Development of Proton Therapy at the SC Linac with BEAMDULAC-SCL Code // Proc. of LINAC 2012. 2012. P.633–635.
- 5. Капчинский И. М. Теория линейных резонансных ускорителей. М.: Энергоиздат, 1982.