## ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

# СТАТУС И ПЕРСПЕКТИВЫ ВЭПП-2000

П. Ю. Шатунов<sup>*a*,1</sup>, Д. Е. Беркаев<sup>*a*, б</sup>, Ю. М. Жаринов<sup>*a*</sup>, И. М. Землянский<sup>*a*</sup>, А. С. Касаев<sup>*a*</sup>, А. Н. Кирпотин<sup>*a*</sup>, И. А. Кооп<sup>*a*, б</sup>, А. П. Лысенко<sup>*a*</sup>, А. В. Отбоев<sup>*a*</sup>, Е. А. Переведенцев<sup>*a*, б</sup>, В. П. Просветов<sup>*a*</sup>, Ю. А. Роговский<sup>*a*, б</sup>, А. Л. Романов<sup>*a*</sup>, А. И. Сенченко<sup>*a*</sup>, А. Н. Скринский<sup>*a*</sup>, Ю. М. Шатунов<sup>*a*, б</sup>, Д. Б. Шварц<sup>*a*, б</sup>

<sup>а</sup> Институт ядерной физики им. Г.И. Будкера СО РАН, Новосибирск, Россия

<sup>6</sup> Новосибирский государственный университет, Новосибирск, Россия

Электрон-позитронный коллайдер ВЭПП-2000 работает в ИЯФ СО РАН с 2010 г. Применение концепции круглых пучков совместно с аккуратной коррекцией орбиты и оптических функций позволило достичь пиковой светимости  $1,2 \cdot 10^{31}$  см<sup>-2</sup> · c<sup>-1</sup> при энергии 500 МэВ. Пиковая светимость ограничена только эффектами встречи, в то время как средняя светимость — недостатком позитронов во всем диапазоне энергии 160–1000 МэВ. Кроме большего количества позитронов для достижения высокой светимости при больших энергиях необходима инжекция пучков при энергии эксперимента. В настоящее время новый электрон-позитронный инжекционный комплекс в ИЯФ собран и готов поставлять интенсивные пучки в коллайдер ВЭПП-2000 при энергии 450 МэВ.

The electron-positron collider VEPP-2000 has been operating at BINP since 2010. The application of round colliding beams concept along with the accurate orbit and lattice correction yielded the high peak luminosity of  $1.2 \cdot 10^{31}$  cm<sup>-2</sup> · s<sup>-1</sup> at 500 MeV. The peak luminosity is limited only by beambeam effects, while the average luminosity — by present lack of positrons in whole energy range of 160–1000 MeV. To perform high luminosity at high energies the top-up injection is needed. At present new electron and positron injection complex at BINP is commissioned and ready to feed VEPP-2000 collider with intensive beams with energy of 450 MeV.

PACS: 29.20.db; 29.27.Ac; 29.27.Fh

#### 1. ОБЗОР КОМПЛЕКСА ВЭПП-2000

Коллайдер ВЭПП-2000 [1] использует концепцию круглых пучков [2]. Выполнение концепции обеспечивается на ВЭПП-2000 размещением двух пар 13-Тл сверхпроводящих соленоидов финального фокуса в двух экспериментальных промежутках, симметрично по отношению к местам встречи.

<sup>&</sup>lt;sup>1</sup>E-mail: P.Yu.Shatunov@inp.nsk.su

Статус и перспективы ВЭПП-2000 1555



Рис. 1. Схема комплекса ВЭПП-2000

Схема комплекса ВЭПП-2000 в том виде, как он работал до 2013 г., показана на рис. 1. Комплекс состоит из инжекционной части (включающей старую систему производства пучков и бустер электронов и позитронов БЭП, ограниченный по энергии на уровне 800 МэВ) и собственно коллайдера с двумя детекторами частиц (сферический нейтральный детектор (СНД) и криогенный магнитный детектор КМД-3), расположенными в промежутках с нулевой дисперсией и малыми бета-функциями. Основные параметры коллайдера даны в табл. 1.

| Параметр                                              | Значение            |
|-------------------------------------------------------|---------------------|
| Периметр С, м                                         | 24,3883             |
| Диапазон энергии E, МэВ                               | 200-1000            |
| Число сгустков                                        | $1 \cdot 1$         |
| Число частиц в сгустке N                              | $1 \cdot 10^{11}$   |
| $\beta$ -функции в месте встречи $\beta^*_{x,z}$ , см | 8,5                 |
| Бетатронные частоты $\nu_{x,z}$                       | 4,1; 2,1            |
| Эмиттансы пучков $\epsilon_{x,z}$ , м · рад           | $1,4 \cdot 10^{-7}$ |
| Параметр пространственного заряда $\xi_{x,z}$         | 0,1                 |
| Светимость $L$ , см <sup>-2</sup> · c <sup>-1</sup>   | $1 \cdot 10^{32}$   |

Таблица 1. Основные параметры ВЭПП-2000 при энергии E = 1 ГэВ

Плотность расположения магнитных элементов и компонентов детекторов столь высока, что невозможно организовать разведение пучков в арках. В результате на ВЭПП-2000 возможна работа только в режиме  $1 \times 1$  сгусток.

## 2. ДИАГНОСТИКА ПУЧКОВ

Диагностика основана на использовании 16 камер ПЗС, которые регистрируют видимую часть синхротронного излучения с краев поворотных магнитов и дают полную информацию о положении, интенсивности и профилях пучков. В дополнение к оптическим датчикам положения пучка используются четыре электростатических пикапа в технических промежутках, два ФЭУ для измерения тока пучков по интенсивности синхротронного излучения и один преобразователь тока пучка в качестве абсолютного измерителя тока. Продольное распределение частиц и длины сгустков измеряются двумя  $\phi$ -диссекторами [3] — стробоскопическими диссекторами изображения с электростатической фокусировкой.

## 3. ЭКСПЕРИМЕНТАЛЬНАЯ РАБОТА

ВЭПП-2000 начал набор статистики с двумя детекторами, установленными в 2009 г. [4]. Первые заходы были посвящены работе в диапазоне высокой энергии, а в последнем сезоне 2012–2013 гг. проводилось сканирование в диапазоне малой энергии. Средняя светимость, полученная в детекторе КМД-3 за последние три сезона, показана красными точками на рис. 2. Красные сплошные и пунктирные линии показывают оценку гипотетически достижимой пиковой светимости. Синяя штриховая линия показывает предел светимости по эффектам встречи при фиксированной оптике кольца (зависимость от энергии  $L \propto \gamma^4$ ). Этот предел был успешно преодолен благодаря уменьшению  $\beta^*$  до 4–5 см при малой энергии.

При высокой энергии (> 500 МэВ) светимость была ограничена в основном недостаточной скоростью производства позитронов. При энергии выше 800 МэВ необходимость увеличивать энергию в коллайдере дополнительно ограничивает светимость. Только в среднем диапазоне энергии (300–500 МэВ) светимость действительно ограничивается эффектами встречи, особенно эффектом флип-флоп [5]. При самых низких значениях энергии слабое радиационное затухание и сильное внутрисгустковое рассеяние при малой динамической апертуре дают сильное ограничение времени жизни пучков.

Хорошо известно, что эффективность столкновения пучков характеризуется «достигнутым» параметром пространственного заряда

$$\xi_{\text{lumi}} = \frac{N^- r_e \beta_{\text{nom}}^*}{4\pi\gamma\sigma_{\text{lumi}}^{*2}},\tag{1}$$

где бета-функция берется номинальной, а размер пучка вычисляется из экспериментально измеренной светимости.



Рис. 2 (цветной в электронной версии). Светимость ВЭПП-2000

На рис. 3 показана корреляция между достигнутым и номинальным параметрами пространственного заряда для всех набранных данных при энергии E = 392,5 МэВ. После тщательной настройки машины параметр пространственного заряда достигал максимального значения  $\xi \sim 0,09$  во время регулярной работы (пурпурные (более светлые) точки на рис. 3).

Во время изучения зависимости пороговой величины параметра  $\xi$  от длины сгустка при относительно низкой энергии 392,5 МэВ было установлено, что уменьшение ВЧнапряжения с 30 до 17 кВ дает существенный прирост максимального значения  $\xi$  (синие (более темные) точки на рис. 3) до  $\xi \sim 0,12$  на одно место встречи.

Независимой проверкой измерений параметра пространственного заряда является анализ спектра когерентных колебаний пучка. Из осциллограммы на рис. 4 видно, что частоты  $\sigma$ - и  $\pi$ -мод равны 0,165 и 0,34 соответственно. Полный сдвиг частоты  $\Delta \nu = 0,175$ соответствует величине параметра  $\xi$  на одно место встречи:

$$\xi = \frac{\cos\left(\pi\nu_{\sigma}\right) - \cos\left(\pi\nu_{\pi}\right)}{2\pi\sin\left(\pi\nu_{\sigma}\right)} = 0,124.$$
(2)



Рис. 3 (цветной в электронной версии). Достигнутый параметр пространственного заряда при энергии 392,5 МэВ



Рис. 4. Сдвиг частоты из-за эффектов встречи при энергии 392,5 МэВ

1558 Шатунов П. Ю. и др.

Увеличение предельного значения параметра  $\xi$  коррелировало с удлинением пучка, что явилось экспериментальным подтверждением предсказаний работы [6] об ослаблении эффектов встречи для сгустков чуть длиннее, чем  $\beta^*$ .

# 4. НЕОБХОДИМОСТЬ МОДЕРНИЗАЦИИ КОМПЛЕКСА ВЭПП-2000

Из рис. 2 можно заключить, что нехватка позитронов не позволяет достичь интенсивности пучков, ограниченной только порогом по эффектам встречи. Это ограничение будет снято после присоединения 250-м каналом К-500 [7] к новому инжекционному комплексу в ИЯФ [8], способному производить интенсивные электронные и позитронные пучки высокого качества при энергии 450 МэВ (рис. 5).

Другое ограничение эффективности ВЭПП-2000 вытекает из максимального значения энергии бустера БЭП [9] на уровне 800 МэВ. Даже при неограниченной скорости производства пучков параметр пространственного заряда, достигнув порогового значения после



Рис. 5. Ускорительный комплекс ВЭПП-2000 после модернизации



Рис. 6. Бустерный синхротрон БЭП

| Параметр                                       | Значение                     |
|------------------------------------------------|------------------------------|
| Периметр С, м                                  | 22,35                        |
| Частота обращения $f_0$ , МГц                  | 13,414                       |
| Радиус поворота $r_0$ , см                     | 128                          |
| Гармоника ВЧ q                                 | 13                           |
| Потери при синхротронном излучении, кэВ/оборот | 70                           |
| Эмиттансы $\epsilon_{x,z}$ , см                | $8,6 \cdot 10^{-6}, 10^{-8}$ |
| Бетатронные частоты $\nu_{x,z}$                | 3,4; 2,4                     |
| Коэффициент уплотнения орбит $\alpha_p$        | 0,06                         |

Таблица 2. Основные параметры БЭП при энергии E = 1 ГэВ

инжекции, неизбежно уменьшится после ускорения в кольце:  $\xi \propto 1/\gamma^2$ . В дополнение к этому «мертвое» время в процессе ускорения и сложности ускорения встречных пучков вблизи порога означают необходимость инжекции при энергии эксперимента. Для возможности работы в таком режиме необходимо увеличить достижимую энергию работы бустера БЭП и перепускного канала БЭП–ВЭПП-2000 до 1 ГэВ.

Бустерный синхротрон БЭП, спроектированный для захвата, охлаждения и накопления «горячих» 125-МэВ позитронов из конверсионной системы, работал с 1991 г. Он состоит из 12 ячеек FODO. Каждая ячейка включает 30°-й секторный магнит, два квадруполя и промежуток, используемый для ВЧ-резонатора, кикеров, септум-магнитов впуска/выпуска, диагностики, вакуумной откачки. Схема бустера представлена на рис. 6, основные параметры БЭП после модернизации перечислены в табл. 2.

## 5. СТАТУС МОДЕРНИЗАЦИИ БЭП

**5.1. Магнитная система.** Основная идея модернизации магнитов состоит в использовании существующих катушек, источников питания и всей инфраструктуры. Требуемое поле 2,6 Тл достигается изменением профиля железа с уменьшением апертуры и подъемом питающего тока до 10 кА [10]. Результаты магнитных измерений прототипа дипольного магнита БЭП показаны на рис. 7.

Основная проблема в согласовании сил диполей и квадруполей вызвана их общим источником питания. Кроме того, этот же источник запитывает поворотные магниты



Рис. 7. Продольное распределение поля  $B_y(s)$  при токе 9,9 кА



Рис. 8. Измеренная кривая (сплошная) насыщения квадруполя в сравнении с аналогичной кривой для дипольного магнита (штриховая). Показан также коридор возможных коррекций



БЭП

перепускного канала. В результате модификация квадруполей должна воспроизводить сильно нелинейную кривую насыщения диполей (рис. 8).

Самая сложная работа связана с квадруполями. План такой: использовать старое ярмо, сделать новый профиль с меньшим вписанным радиусом и увеличить заложенную в линзе секступольную компоненту (рис. 9).

Существующие коррекции достаточно слабые и становятся еще слабее с насыщением железа. Необходимо попасть в коридор, обеспечиваемый этими коррекциями. Кривые насыщения секступольной и квадрупольной гармоник существенно различаются, секступольная компонента сильно насыщается при токе 6 кА (рис. 10).



Рис. 10. Кривые насыщения квадрупольной (1) и секступольной (2) гармоник

**5.2. Канал БЭП–ВЭПП-2000.** Основной доработкой в канале является изготовление новых «синих» магнитов и новой вакуумной камеры для них. Они последовательно запитываются с диполями БЭП. Следовательно, мы имеем те же самые проблемы: необходимо подогнать кривую насыщения для возможности синхронной работы с кольцом БЭП. К настоящему времени все 8 магнитов изготовлены (рис. 11), произведено измерение краевого поля (рис. 12).



Рис. 11. Короткий «синий» магнит



Рис. 12. Измерение краевого поля «синего» магнита

**5.3. Вакуумная система.** Одна ячейка вакуумной камеры состоит из экструдированного алюминиевого сегмента внутри диполя и фокусирующего дублета и камеры из нержавеющей стали с портом вакуумной откачки. Для использования старой системы после модернизации алюминиевая камера (рис. *a*) локально деформирована внутри дипольного магнита (рис. *б*) и малого квадруполя QD (рис. *в*) (рис. 13).



Рис. 13. Поперечное сечение вакуумной камеры

## 1562 Шатунов П. Ю. и др.

**5.4. ВЧ-система.** Поскольку потери энергии за оборот увеличиваются с ростом энергии (достигая 70 кэВ/оборот), был изготовлен новый ВЧ-резонатор (рис. 14). Он работает на частоте 174,376 МГц и при напряжении 110 кВ.



Рис. 14. Новый ВЧ-резонатор на частоте 174,376 МГц на кольце БЭП

5.5. Системы впуска и выпуска. Новый впускной септум-магнит необходим для получения 450-МэВ пучка из инжекционного комплекса.  $25^{\circ}$ -й импульсный магнит с апертурой 10 мм и полем 17 кГс изготовлен и установлен после магнитных измерений. Система выпуска остается неизменной. Для выпуска требуется создать искажение орбиты  $\sim 25$  мм в горизонтальном направлении, так называемый «бамп». Старая система дополнительных витков в четырех дипольных магнитах становится неэффективной при высоких значениях энергии из-за сильного насыщения железа. Вместо этого установлены два 30-см импульсных (2,5 мс) шихтованных С-образных магнита с полем 1,7 кГс.



Рис. 15. Современное состояние бустера БЭП, показаны также финальные магниты канала К-500

# ЗАКЛЮЧЕНИЕ

Круглые пучки дают существенный прирост светимости. Параметр пространственного заряда при средних значениях энергии достигал величин  $\xi \sim 0,1-0,12$ . ВЭПП-2000 успешно набирал статистику с двумя детекторами во всем диапазоне энергии 160–1000 МэВ, значение светимости превышает в 2–5 раз величины, достигнутые на его предшественнике — ВЭПП-2М [11]. В настоящее время проводится модернизация бустера БЭП (рис. 15) для достижения энергии 1 ГэВ, чтобы обеспечить возможность инжекции при энергии эксперимента и проектную светимость электрон-позитронного коллайдера ВЭПП-2000.

#### СПИСОК ЛИТЕРАТУРЫ

- Shatunov Yu. M. et al. Project of a New Electron Positron Collider VEPP-2000 // Conf. Proc. 2000. V. C0006262. P. 439–441.
- 2. Danilov V. V. et al. The Concept of Round Colliding Beams // Conf. Proc. 1996. V. C960610. P. 1149–1151.
- 3. Zinin E. I. Ph. D. Thesis. Budker Inst. of Nucl. Phys. Novosibirsk, 1984.
- Achasov M. N. et al. First Experience with SND Calorimeter at VEPP-2000 Collider // Nucl. Instr. Meth. A. 2009. V. 598. P. 31–32.
- 5. *Shwartz D. et al.* Recent Beam–Beam Effects and Luminosity at VEPP-2000 // Proc. of IPAC2014. Dresden, Germany, 2014. P.924–927.
- 6. Danilov V. V., Perevedentsev E.A. Two Examples of Integrable Systems for Round Colliding Beams // Conf. Proc. 1997. V. C970512. P. 1759.
- Zemlyansky I. M. et al. Electron and Positron Beams Transportation Channels to BINP Colliders // Proc. of the 24th All-Russian Conf. on Charged Part. Accel. (RuPAC14). 2014; http://inspirehep.net/record/1335364/files/frca03.pdf.
- 8. Logatchev P. et al. Status of Injection Complex VEPP-5 // Proc. of the 24th All-Russian Conf. on Charged Part. Accel. (RuPAC14). 2014.
- 9. Anashin V. V. et al. Damping Ring for Electrons and Positrons BEP. Preprint BINP. Novosibirsk, 1984. P. 114.
- 10. Shwartz D. et al. Booster of Electrons and Positrons (BEP) Upgrade to 1 GeV // Proc. of the 5th Intern. Part. Accel. Conf. (IPAC 2014). 2014. P. MOPRO018; http://jacow.org/IPAC2014/papers/mopro018.pdf.
- 11. Romanov A. L. et al. Status of the Electron–Positron Collider VEPP-2000 // North Amer. Part. Accel. Conf. (PAC13), Pasadena, CA, USA, Sept. 29 October 4, 2013.