О ВОЗМОЖНОСТИ ИССЛЕДОВАНИЙ С ОЧЕНЬ ХОЛОДНЫМИ НЕЙТРОНАМИ НА ИМПУЛЬСНЫХ ИСТОЧНИКАХ

Ю. Н. Покотиловский
Объединенный институт ядерных исследований, Дубна

Рассматривается возможность исследований с очень холодными нейтронами (ОХН) на примере импульсного реактора НИФ ИБР-2. Кратко рассмотрены возможные области применения и особенности параметров реактора для таких исследований. Приводятся результаты детальных расчетов генерации ОХН в различных холодных замедлителях, транспорта ОХН в нейтроноводах и подавления вклада запаздывающих нейтронов.

The possibility of investigations with very cold neutrons (VCN) at the FLNP pulsed reactor IBR-2 is considered. Possible application areas and the reactor characteristics for these investigations are shortly described. The results of detailed calculations of the VCN generation in different cold moderators, VCN transport in neutron guides and suppression of contribution of delayed neutrons are outlined.

PACS: 28.20.-v; 28.20.Gd; 28.41.Pa; 29.27.Ac

ВВЕДЕНИЕ

Теоретические и экспериментальные работы по применению рассеяния нейтронов для исследования вещества (структура и динамика газов, жидкостей и твердых тел) вначале концентрировались в области тепловых нейтронов (5–100 мэВ) [1–3]. Затем постепенно сфера применения расширялась как в область холодных (1–5 мэВ), так и более быстрых — энтропиевых и электронволновых нейтронов [4]. В последние годы усиливается интерес к исследованиям с применением очень холодных нейтронов (ОХН) — с длиной волны больше 10 Å (энергия ниже 1 мэВ).

Из общих соображений очевидно, что ОХН позволяют лучше исследовать материала на больших характерных масштабах (100–1000 Å) и больших временах. Информация о структуре и динамике может быть получена с помощью различных экспериментальных нейтронных методов: времепролетной спектрометрии неупругого рассеяния высокого разрешения, спин-эхо спектрометрии, малоуглового рассеяния, рефлектометрии, дифракции, специально приспособленных к использованию длинноволновых нейтронов.

Можно привести некоторые из областей и экспериментальных методов, где применение ОХН может дать преимущества по сравнению с более коротковолновыми нейтронами.

1E-mail: pokot@nf.jinr.ru
В сложных молекулярных комплексах и в «мягкой материи» типичными являются медленные движения с характерной энергий, соответствующей диапазону энергий ОХН, поэтому спектрометрия неупругого рассеяния высокого разрешения с их применением может дать новую полезную информацию.

Величина сечения рассеяния нейтронов на кластерах пропорциональна квадрату длины волны, это усиливает возможности исследования наноматериалов.

Длинноволновая дифракция нейтронов применима при структурном анализе больших молекулярных комплексов, особенно биологической природы.

Развитие нейтронной микроскопии и голографии возможно только с появлением достаточно интенсивных потоков ОХН.

Сильный рост сечения захвата с уменьшением энергии приводит к большей величине контраста поглощение/пропускание, что также существенно в нейтронной томографии.

Нейтронно-оптические инструменты могут лучше работать на длинных волнах благодаря большему отношению коэффициента преломления нейтронов в среде:

$$ (n - 1) \approx \left(\lambda / \lambda_c \right)^2. $$

Здесь λ — длина волны нейтрона; $\lambda_c = (\pi/Nb)^{1/2}$ — критическая длина волны, соответствующая полному отражению нейтронов при всех углах падения; N — атомная плотность среды; b — длина когерентного рассеяния нейтрона в веществе. Отсюда следует расширение возможностей в нейтронной оптике.

Угол полного отражения от зеркал пропорционален длине волны нейтронов, это обеспечивает лучшее отражение от зеркал, а от суперзеркал с большим m вплоть до углов 10–20°.

Угол отклонения призмой пропорционален квадрату длины волны нейтронов, широкогулярные лучи могут быть лучше сфокусированы с помощью зеркал или линз на меньших длинах: фокальная длина обратно пропорциональна квадрату длины волны нейтрона.

Благодаря большей величине фазовых сдвигов нейтронных волн в веществе и магнитном поле (фазовый сдвиг пропорционален длине волны) ОХН более чувствительны к малому контрасту — это существенно расширяет возможности нейтронной томографии точных образцов.

В нейтронной интерферометрии важно обеспечить достаточно большие длины когерентности: продольной и поперечной, этого легко достигнуть в длинноволновой области нейтронного спектра.

1. ХАРАКТЕРИСТИКИ ИБР-2

Экспериментальная техника рассеяния нейтронов на импульсных источниках имеет свою специфику (см. недавний обзор [5]). Работа с ОХН на импульсном пучке нейтронов реактора ИБР-2 имеет дополнительные особенности: положительные и отрицательные. К положительным надо отнести, в первую очередь, большой интервал между импульсами — 200 мс. Такая большая длительность позволяет, например, на длине пролетной базы 10–12 м измерять времепролетные спектры без наложения нейтронов от последовательных реакторных импульсов вплоть до скоростей нейтронов 50–100 м/с (длина волны нейтронов 40–80 Å).
Большая длительность реакторной вспышки ИБР-2 (~ 240 мкс) сильно ограничивает энергетическое разрешение при спектрометрии тепловых и холодных нейtronов (длительность импульса тепловых нейтронов составляет ~ 300 мкс) и требует для улучшения разрешения вводить дополнительные устройства, например фурье-чиперы для структурной нейтронографии высокого разрешения [6]. Для диапазона энергий ОХН ИБР-2 благодаря малой скорости нейтронов дает возможность получить неплохое разрешение — порядка микрозондировок — на сравнительно коротких пролетных базах: 10–15 м. С другой стороны, характерное время вытекания ОХН из холодных замедлителей, оптимизированных по максимальному выходу ОХН, как показывают расчеты, на порядок превышает длительность импульса известных импульсных нейтронных источников с коротким импульсом (см. таблицу), но близко к длительности импульса реактора ИБР-2. Для нейтронных источников с короткой вспышкой (20–30 мкс для источников спалейши-типа) большое время вытекания ОХН из оптимального по толщине холодного замедлителя полностью уничтожает преимущество короткой вспышки или вынуждает использовать тонкие замедлители с заметно уменьшенным выходом нейтронов.

Импульсные источники тепловых нейтронов

<table>
<thead>
<tr>
<th>Название, страна</th>
<th>Φ_{max}, см$^{-2} \cdot $с$^{-1}$</th>
<th>δt, мкс</th>
<th>Частота, с$^{-1}$</th>
<th>Импульсный флюенс, см$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIS I, Великобритания</td>
<td>10^{15}</td>
<td>25</td>
<td>50</td>
<td>$\sim 2,5 \cdot 10^{10}$</td>
</tr>
<tr>
<td>ISIS II, Великобритания</td>
<td>$4,5 \cdot 10^{15}$</td>
<td>25</td>
<td>5</td>
<td>$\sim 1,1 \cdot 10^{11}$</td>
</tr>
<tr>
<td>MLNSC, США</td>
<td>$7 \cdot 10^{14}$</td>
<td>25</td>
<td>20</td>
<td>~ $1,75 \cdot 10^{10}$</td>
</tr>
<tr>
<td>SNS, США</td>
<td>$1,2 \cdot 10^{15}$</td>
<td>20–50</td>
<td>60</td>
<td>Макс. $6 \cdot 10^{10}$</td>
</tr>
<tr>
<td>STS, США (проект)</td>
<td>$5 \cdot 10^{15}$</td>
<td>20–200</td>
<td>10</td>
<td>Макс. 10^{12}</td>
</tr>
<tr>
<td>JSNS, Япония</td>
<td>$2/6,5 \cdot 10^{15}$</td>
<td>20–50</td>
<td>25</td>
<td>Макс. $3,25 \cdot 10^{11}$</td>
</tr>
<tr>
<td>Donguan, Китай</td>
<td>$\sim 5 \cdot 10^{14}$</td>
<td>20–50</td>
<td>25</td>
<td>Макс. $2,5 \cdot 10^{10}$</td>
</tr>
<tr>
<td>ИБР-2, Россия</td>
<td>$\sim 6 \cdot 10^{15}$</td>
<td>310</td>
<td>5</td>
<td>$\sim 1,85 \cdot 10^{12}$</td>
</tr>
<tr>
<td>ESS, Швеция (проект)</td>
<td>$(5–7,5) \cdot 10^{15}$</td>
<td>2800</td>
<td>14</td>
<td>Макс. $2,1 \cdot 10^{13}$</td>
</tr>
</tbody>
</table>

Третья отличительная черта ИБР-2 — большой фон запаздывающих нейтронов (~ 8% от средней мощности) — представляет самую серьезную проблему для работы с ОХН. Основной поток в спектре запаздывающих нейтронов на ИБР-2 составляют быстрые и эпительные нейтроны. Их подавление на выходе нейтронов, как известно, достигается выбором соответствующим уменьшенным радиусом кризисна и ширине нейтронов. Однако и в спектре ОХН, холодных и тепловых нейтронов, каналирующих по кри-волинейному нейтроноводу, естественно присутствуют запаздывающие нейтроны с тем же спектром и в значительном количестве. В максвелловском спектре поток холодных нейтронов пропорционален λ^{-5} и при больших длинах волн нейтронов поток запаздывающих тепловых нейтронов на ИБР-2 из нейтроновода превышает поток ОХН. Рис. 1 показывает рассчитанное отношение интенсивности нейтронов в нормированном максвелловском спектре холодных нейтронов

$$\Phi(\lambda) = \frac{2\lambda^4}{\lambda_0^5} e^{-(\lambda_0/\lambda)^2},$$

где $\lambda_0 = 5$ Å, к постоянному фону запаздывающих нейтронов. Из графика видно, что на краях спектра, особенно в интересующем нас длиноволновом диапазоне, фон запады-
Рис. 1. Рассчитанное отношение спектральной интенсивности нейтронов в нормированном максвелловском спектре к постоянному суммарному по спектру потоку запаздывающих нейтронов

Рис. 2. Рассчитанное ослабление воздушным промежутком длиной 3 м пучка нейтронов в зависимости от длины волны нейтронов

вающих нейтронов составляет значительную часть интенсивности или даже превышает поток нейтронов в максвелловском спектре. Это заставляет специально подбирать параметры нейтроновода для вывода нейтронов на исследуемый образец: радиус кривизны, ширину и длину, а также вводить специальный прерыватель, сфазированный с импульсами реактора и расположенный близко к поверхности холодного замедлителя, с целью максимального подавления вклада запаздывающих нейтронов. Для подавления запаздывающих нейтронов, канализирующих по нейтроноводу, рассчитанному для транспортировки ОХН, этот прерыватель может быть выполнен легким, малогабаритным, из тонкого листа сильнолюминесцирующего нейтрана материала: гадолиния или бора.

Кроме того, конструктивно длинный воздушный промежуток между замедлителями и входом в нейтроноводы на реакторе ИБР-2 (~3 м) сильно ослабляет поток ОХН. На рис. 2 показан результат расчета коэффициента ослабления нейтронов воздухом, расчет основан на измеренных сечениях ОХН на азоте [7] и соотношении сечений когерентного рассеяния на азоте и кислороде [8]. Из рис. 2 видно, что поток нейтронов с длиной волны 30 Å ослабляется на длине 3 м в пять раз. Поэтому для получения максимального потока ОХН вход в нейтроновод желательно размещать ближе к холодному замедлителю. Перечисленные особенности определяют требования к геометрии и конструкции установки для получения и вывода ОХН на образец.

Первые предложения («О некоторых возможностях исследований с очень холодными нейтронами на импульсных источниках» [9]) и соответствующий проект ИБР-2 были представлены более 30 лет назад. Однако по разным причинам, в числе которых было и отсутствие холодного источника нейтронов, в то время проект по генерации и транспортировке очень холодных нейтронов не был реализован. К настоящему времени в лаборатории накоплен опыт разработки и эксплуатации холодных источников: твердого метанового [10, 11] и шаришкового мезитилового [12–16] на модернизированном импульсном реакторе ИБР-2М [17]. К тому же и на Западе в нейтронных лабораториях в последние годы начал проявляться интерес к длинноволновой области спектра нейтронов. В Аргонской лаборатории в США (ANL) в 2005 г. [18] и в следующем
году в Институте Пауля Шеррера (PSI) в Швейцарии [19] были проведены специальные совещания по анализу состояния и перспектив исследований с очень холодными нейтронами.

Сейчас в мире имеется несколько специализированных установок для вывода очень холодных нейтронов.

Vertikalnyy khanal OKH na vysokopotochnom reactore v Institute Laue-Langevena v Grenoble [20] vychodit ujkiy spektr neytronov v rayone dliny volny ~ 40 Å i ispolzуется, v osnovnom, dlya rabot po neytronoy dlinnovolnovoy interferometrii. Na reactore FRM-II v Garshinge (Germaniya) postroen kompleks MIRA, vkluchayushchyi neytronovod s spektrom OKH v diapazonе 8–30 Å i nabor instrumentov dlya reflektometrii, malouglowego рассения и поляризационного анализа при работе c поляризованными нейтронами [21].

Kak pokazano далее, импульсный реактор ИБР-2 является наиболее подходящим импульсным нейтронным источником для генерации и времипролетной спектрометрии ОХН.

2. РАСЧЕТЫ ГЕНЕРАЦИИ И ТРАНСПОРТА ОХН НА ИБР-2

Dalее представлены результаты детальных расчетов генерации и транспортировки ОХН на 3-м канале реактора ИБР-2. Расчеты (с использованием программы MCNP) проведены в несколько упрощенной (цилиндрической) модели активной зоны реактора, замедлителей и поглотителей между ними, но со строгим соблюдением всех основных размеров элементов геометрии, промежутоков и оболочек. Проверка надежности используемой модели иллюстрируется рис. 3, где показано сравнение спектров нейтронов на расстоянии 30 см от водяного замедлителя, рассчитанных в данной работе и измеренного в работе [22]. Радиус спектров невелико и примерно таково, что и разница рассчитанных и измеренных спектров в [22].

Konfiguratsiya расположения холодных замедлителей соответствует принятой для холодных замедлителей на ИБР-2 [10–16]: предлагается в качестве замедлителя служит оптимизированный по

![Graph](image)

Рис. 3. Сравнение спектров нейтронов на расстоянии 30 см от водяного замедлителя: рассчитанного в данной работе и измеренного в работе [22]
В качестве холодных замедлителей в расчетах тестировались мезитилен [12–16], твердый метан [10, 11] и жидкий пароводород. Детальные расчеты зависимости плотности тока ОХН с поверхности мезитиленового замедлителя при плотности 0,4 г/см3 (шариковый замедлитель) от толщины показали, что эта зависимость слаба в интервале толщины 4–8 см, оптимальной выбрана толщина 4 см. Результат такого же расчета для метана показан на рис. 4; видно, что наибольший выход ОХН достигается при толщине 4 см. Плотность метана в этих расчетах принималась равной 0,26 г/см3, а мезитилена 0,4 г/см3, что соответствует половиной плотности замедлителей при этой температуре ввиду использования шариковых замедлителей [12–16]. Для пароводорода ($T = 20$ К, плотность 0,072 г/см3) зависимость тока ОХН с поверхности слабая в интервале толщин 4–6 см.

Рис. 5 показывает рассчитанные спектры плотности тока нейтронов на выходе разных замедлителей оптимальной толщины 4 см: воды, мезитилена, метана, пароводорода. В этих расчетах вводился упомянутый выше дополнительный водный цилиндрический отражатель вокруг замедлителей; при его отсутствии все интенсивности нейтронов уменьшились примерно в два раза. Так как жидкый водород не может быть испольован на ИБР-2 из соображений безопасности, наилучшим по производительности холодным замедлителем, согласно проведенным расчетам, является твердый метан в шариковом варианте.

В выборе параметров криволинейного нейтроновода для ОХН определяющими являются два фактора: максимальное подавление потока быстрых, эпитепловых и тепловых

![Diagram](image-url)

Рис. 4. Рассчитанные спектры нейтронов вблизи метанового замедлителя при 22 К (плотность 0,26 г/см3) в зависимости от толщины замедлителя
Рис. 5. Рассчитанные спектры нейтронов вблизи различных холодных замедлителей оптимальной толщины 4 см: воды, мезитилена, метана, пароводорода

Запаздывающих нейтронов и эффективный захват и канализирование ОХН. В процессе моделирования были рассчитаны пропускание нейтронов и фон запаздывающих нейтронов в разных вариантах радиуса кривизны, ширины и высоты нейтроновода: это радиус 300, 200, 150, 125 и 100 м, высоты 6 и 10 см и ширины 6, 4, и 2 см. Рис.6 свидетельствует об окисании влияния кривизны нейтроновода на интенсивность запаздывающих нейтронов на выходе нейтроновода длиной 8 м, шириной 4 см и высотой 10 см для разных радиусов кривизны нейтроновода. Расчеты проводились методом Монте Карло (MCNP), в котором отсутствовало канализирование нейтронов по нейтроноводу путем зеркального отражения от его поверхности. Расчеты показали, что при выбранной длине нейтроновода 8 м фон запаздывающих нейтронов начинает эффективно подаваться начиная с

Рис. 6. Рассчитанные спектры запаздывающих нейтронов на выходе нейтроновода при длине $L = 8$ м, ширине $a = 4$ см, высоте $h = 10$ см и разных радиусах кривизны
радиуса кривизны 150 м. При радиусе 300 и 200 м подавление запаздывающих нейтронов недостаточно, а при переходе от 150 м к 125 и 100 м дальнейший эффект их подавления незначителен, но при этом более существенно ограничивается спектр ОХН.

Коэффициент прохождения нейтронов через криволинейный нейтроновод в зависимости от энергии нейтронов E имеет вид

$$T_0(E, \rho) = \frac{2E^*}{3E} \ (E > E^*)$$ \hspace{1cm} $$T_0(E, \rho) = \frac{2E^*}{3E} \left[1 - \left(1 - \frac{E}{E^*}\right)^{3/2} \right] \ (E < E^*),$$

где ρ — радиус кривизны нейтроновода; $E^* = \rho E_b/2a$ — критическая энергия; E_b и a — гранничная энергия и ширина нейтроновода.

Коэффициент захвата нейтронов в канализировании по зеркальному нейтроноводу определяется формулой

$$K = 4\theta_c^2 \times K_a \times K_h, \quad K_{a,h} = 1 + \left(\theta_c/\theta_0\right)^2 \ (\theta_c \leq \theta_0); \quad K_{1,2} = 2\theta_c/\theta_0 \ (\theta_c \geq \theta_0).$$

Здесь $\theta_c = (E_b/E)^{1/2}$, $\theta_0 = a/L$ для ширины нейтроновода a и $\theta_0 = h/L$ для высоты нейтроновода h при длине нейтроновода L.

Рис. 7 показывает рассчитанные спектры нейтронов на выходе нейтроновода длинной 8 м ($\rho = 150$ м, $a = 4$ см, $h = 10$ см) из метанового и мезитиленового замедлителей, за исходные данные брались спектры на выходе из замедлителей на рис. 5 и коэффициент захвата в нейтроновод и канализирования согласно уравнениям (3) и (4). В расчете предполагалась идеально гладкая поверхность нейтроновода.

Рис. 8 иллюстрирует распределение тока нейтронов по поверхности метанового замедлителя в разных энергетических интервалах нейтронов: 0–0,1 мэВ, 0,25–0,5 мэВ, 1–1,25 мэВ и 4,75–5 мэВ. Видно, что плотность тока распределена довольно равномерно, это существенно для эффективного захвата нейтронов в канализирование в широком диапазоне углов отражения от поверхности нейтроновода.

![Рис. 7. Рассчитанные спектры нейтронов на выходе нейтроновода ($\rho = 150$ м, $a = 4$ см, $h = 10$ см) из метанового замедлителя ($T = 22$ К, плотность 0,26 г/см3) и мезитиленового замедлителя ($T = 20$ К, плотность 0,4 г/см3)](image_url)
Рис. 8. Рассчитанные распределения плотности тока нейтронов на поверхности метанового замедлителя \((T = 22 \text{ K},\) плотность 0,26 г/см²) в разных энергетических интервалах: 0–0,1 мэВ, 0,25–0,5 мэВ, 1–1,25 мэВ и 4,75–5 мэВ, в зависимости от расстояния от центра замедлителя

Рис. 9. Рассчитанное на основе данных рис. 7 отношение спектральной интенсивности нейтронов на выходе нейтроновода с \(\rho = 150 \text{ м}, a = 4 \text{ см}, h = 10 \text{ см} \) из метанового замедлителя \((T = 22 \text{ K},\) плотность 0,26 г/см²) к суммарной по спектру постоянной интенсивности канализирующих запаздывающих нейтронов

На рис. 9 показано рассчитанное на основе данных рис. 7 для метанового замедлителя отношение интенсивности нейтронов в спектре ОХН к постоянному потоку запаздывающих нейтронов. Благодаря выбранной конфигурации криволинейного нейтроновода это соотношение значительно лучше, чем показанное на рис. 1, но, тем не менее, требует введения легко сфазированного прерывателя вблизи поверхности замедлителя. Как было отмечено выше, время вытекания нейтронов из оптимальных по потоку ОХН замедлителей сильно зависит от энергии нейтронов. Это иллюстрируется рис. 10,
Рис. 10. Временная зависимость вытекания нейтронов из метанового замедлителя для разных энергетических интервалов

где показаны рассчитанные кривые вытекания из метанового замедлителя для разных энергий нейтронов: в диапазоне 5–10 мэВ, 0,1–0,5 мэВ и 0,05–0,1 мэВ. Для более медленных нейтронов время вытекания значительно превосходит время импульса тепловых нейтронов в реакторе ИБР-2. При отсутствии дополнительного водяного отражателя вокруг замедлителя время вытекания ОХН уменьшается примерно на 30 %. Подобные кривые вытекания были вычислены и для других замедлителей ОХН: мезитилена и пароводорода — они демонстрируют те же зависимости.

При таких больших временах вытекания ОХН из холодного замедлителя более важным параметром является не столько интенсивность нейтронов в замедлитееле в максимуме вспышки, сколько полный флюенс нейтронов за вспышку. По этому параметру ИБР-2 не имеет равных среди существующих импульсных источников тепловых нейтронов (см. последнюю колонку в таблице).

Важной проблемой в транспортировке ОХН является обеспечение максимальной гладкости поверхности нейтроновода, так как из-за широкого угла захвата ОХН испытывают по сравнению с более коротковолновыми нейтронами много отражений. Наиболее обещающим в этом отношении выглядят так называемые «реплика-нейтроноводы», получаемые термическим или электрохимическим методом нанесения на поверхность флюат-стекла отражающего нейтроны металла с последующим его удалением со стекла в виде фольги. Такой нейтроновод был впервые применен для транспорта ОХН в вертикальном канале установки [20]. Нейтроновод показал хорошую проводимость ОХН и стабильность в условиях сильной радиационной нагрузки. В дальнейшем такие нейтроноводы исследовались на возможность транспортировки ультрахолодных нейтронов [23–26], однако систематического исследования отражающих и транспортных свойств этих нейтроноводов для ОХН в функции длины волны и угла падения нейтронов не проводилось. Для сооружения нейтроновода ОХН, удовлетворяющего высоким требованиям по транспортировке нейтронов, такие предварительные исследования необходимы.
СПИСОК ЛИТЕРАТУРЫ

6. Балагуров А. М. // ЭЧЯЯ. 2015. T. 46, вып. 3. С. 453;

Получено 23 июня 2017 г.