QCD EVOLUTION OF NUCLEAR STRUCTURE
FUNCTIONS AT LARGE x:
EMC EFFECT AND CUMULATIVE PROCESSES

V. T. Kim

Petersburg Nuclear Physics Institute NRC KI, Gatchina, Russia
St. Petersburg Polytechnic University, St. Petersburg, Russia

QCD evolution of nuclear structure functions at large x is reviewed within the approach based on QCD factorization for hard processes and multiquark flucton model. In this approach, $x > 1$ region of the nuclear structure functions is intimately related with $x < 1$ region due to manifestation of quark and gluon degrees of freedom in nuclei. Properties of QCD evolution and observed EMC-ratio for nuclear structure functions at $x < 1$ result in an admixture of hard extra sea quark distribution. This extra nuclear quark sea provides a bump above unity for EMC-ratio at small x and becomes dominant in the nuclear quark sea for cumulative region $x > 1$. It leads to a striking prediction, confirmed by data, for the same spectrum slopes of all cumulative hadrons in nuclear fragmentation region.

PACS: 12.39.St; 13.75.-n; 25.30.-c

1 E-mail: victor.kim@cern.ch