СИММЕТРИЧНАЯ СТРУКТУРА ДЛЯ КОЛЛАЙДЕРА NICA

А. Е. Большаков, П. Р. Зенкевич¹

Институт теоретической и экспериментальной физики им. А. И. Алиханова Национального исследовательского центра «Курчатовский институт», Москва

Предложена и рассчитана новая структура коллайдера NICA с симметричным размещением триплетов в точках встречи и сдвинутой рабочей точкой ($Q_{x,y} \sim 9,1$). В этой структуре возникают два кольца (кольцо A и кольцо B) с суперпериодичностью 2 и отличающейся друг от друга оптикой. Показано, что новая структура позволяет при сохранении номинального значения β -функции в месте встречи ($\beta_{x,y} = 0.35$ м) с учетом всех возмущающих факторов получить в обоих кольцах DA ~ 75 мм мрад, что значительно превышает аксептанс камеры коллайдера (ACC = 40 мм мрад).

We suggested and calculated a new lattice of NICA collider with symmetrical location of focusing triplets in interaction points and shifted working point ($Q_{x,y} \sim 9.1$). In this lattice two rings (ring A and ring B) with superperiodicity 2 and different optics appear. It is shown that the new lattice permitrs us, with account of all perturbing factors for nominal of β function in the interaction point ($\beta_{x,y} = 0.35$ m), to reach DA ~ 75 mm \cdot mrad, which is significantly more than the chamber (ACC = 40 mm \cdot mrad).

PACS: 29.20.db; 29.27.Bd

введение

Анализ динамики частиц в коллайдере NICA показал, что нелинейные краевые поля квадрупольных линз и поворотных магнитов приводят к существенным возмущениям движения частиц и, как следствие, к недопустимому уменьшению динамической апертуры. Динамическая апертура (DA), определяемая только нелинейными краевыми полями квадрупольных линз и поворотных магнитов, составляет DA < 20 мм мрад, в то время как номинальный аксептанс (ACC) камеры машины ACC = 40 мм мрад [1]. Отметим, что основную роль имеют краевые поля квадрупольных линз, которые приводят к двум эффектам:

- возникновению зависимости частоты бетатронных колебаний от амплитуды [2];

 появлению структурных резонансов бетатронных колебаний [3], условие которых имеет следующий вид:

$$2mQ_x + 2nQ_y = kN_{\text{per}},\tag{1}$$

¹E-mail: zenkevich@itep.ru

где m, n — целые числа ($|m| = 0, 1, |n| = 0, 1, 2, |m| + |n| \leq 2$); k — целое число; N_{per} — число суперпериодов в структуре машины. В принятой ранее структуре суперпериодичность отсутствовала ($N_{\text{per}} = 1$). В такой структуре внутри выбранной рабочей клетки ($0 \leq Q_x, Q_y \leq 9.5$) существуют следующие резонансы, возбуждаемые краевыми полями квадрупольных линз: 1) $4Q_x - 4Q_y = 0$ (разностный резонанс связи), номер гармоники k = 0; 2) $2Q_x + 2Q_y = 37$ (суммовой резонанс связи); 3) $4Q_x = 37, 4Q_y = 37$ (одномерные резонансы). На краях рабочей клетки существуют те же резонансы, но с номерами k = 36, 38. Симметризация структуры приводит к возникновению двух суперпериодов ($N_{\text{per}} = 2$). При этом все резонансы внутри рабочей клетки, за исключением разностного резонанса связи, исчезают. С учетом этих соображений была принята следующая стратегия:

1. Выбрать симметричное расположение триплетов финального фокуса относительно точки встречи пучков.

2. Сдвинуть номинальные бетатронные частоты от $Q_{x,y} \sim 9,44$ до $Q_{x,y} \sim 9,1$ с целью отойти от опасных нелинейных резонансов, существующих на краю рабочей клетки (при $Q_{x,y} \sim 9,5$).

Для моделирования динамики частиц использовалась программа MAD-X(PTC) [4]. Расчеты проводились по программе симплектического трекинга MAD-X-PTC для ансамбля 40 000 частиц, распределенного по полярной сетке в пространстве поперечных инвариантов E_x , E_y . Проводился трекинг частиц для 1000 оборотов. Далее определялась «область жизни», т. е. область в пространстве поперечных инвариантов E_x , E_y , где фазовые траектории частиц сохраняют стабильность. Если $r(\theta, N)$ соответствует наибольшей стабильной амплитуде в направлении θ для N оборотов, то динамическая апертура (DA) может быть определена как

$$D(N) = \frac{2}{\pi} \int_{0}^{\pi/2} r(\theta, N) d\theta \equiv \langle r(\theta, N) \rangle.$$
(2)

1. ВЫБОР ГРАДИЕНТОВ В КВАДРУПОЛЬНЫХ ЛИНЗАХ КОЛЬЦА. РАСЧЕТ СХЕМЫ КОРРЕКЦИИ ХРОМАТИЗМА

Предлагается вариант структуры с симметричным расположением триплетов относительно точки встречи. В этом случае получается два кольца: кольцо А — «по часовой стрелке» и кольцо В — «против часовой стрелки». В табл. 1 приведены основные параметры кольца А, на рис. 1 — параметры Твисса кольца А. Приведены только параметры структуры, отличающиеся от стандартных параметров коллайдера [1].

Параметр	Значение
eta-функция в точке встречи, м	0,35
Бетатронные частоты Q_x/Q_y	9,1031/9,091
Хроматичности Q'_x/Q'_y	-31,1/-29,5
Фактор критической энергии $\gamma_{ m tr}$	7,654

Таблица 1. Основные параметры кольца А

632 Большаков А.Е., Зенкевич П.Р.

В табл. 2 приведены основные параметры кольца В, на рис. 2 — параметры Твисса кольца А, на рис. 3 — параметры Твисса колец А и В в области места встречи пучков.

Рис. 1. Параметры Твисса кольца А

Таблица 2.	Основные	параметры	кольца В
------------	----------	-----------	----------

Параметр	Значение
β -функция в точке встречи, м	0,35
Бетатронные частоты Q_x/Q_y	10,105/9,111
Хроматичности Q_x'/Q_y'	-30,9/-29,9
Фактор критической энергии $\gamma_{ m tr}$	7,3

Рис. 2. Параметры Твисса кольца В

Симметричная структура для коллайдера NICA 633

Рис. 3. Параметры Твисса колец А и В в области места встречи пучков

На рис. 4 показана область стабильного движения частиц — «область жизни» пучка при учете *только* краевых полей квадрупольных линз и поворотных магнитов для колец A и B. Зеленым цветом отмечены начальные значения инвариантов E_x , E_y для стабильных частиц, черным — для нестабильных. Значения динамической апертуры составляют $DA_A = 376 \text{ мм} \cdot \text{мрад}$, $DA_B = 318 \text{ мм} \cdot \text{мрад}$, что значительно превышает аксептанс кольца.

Для коррекции эффектов хроматизма предусмотрены две цепи секступольных линз, размещенных в арках накопителя. Проблема состоит в том, что для получения необходимого сдвига бетатронных частот приходится уменьшать набег фазы на ячейку μ в арках и тем самым уходить от оптимального значения $\mu = \pi/2$. Это приводит к увеличению влияния систем коррекции хроматизма на динамическую апертуру. На рис. 5. показана

Рис. 4 (цветной в электронной версии). «Область жизни» пучка при учете *только* краевых полей квадрупольных линз и поворотных магнитов для кольца A (*a*) и кольца B (δ). Соответствующие значения DA: DA_A = 376 мм · мрад, DA_B = 318 мм · мрад

Рис. 5 (цветной в электронной версии). «Область жизни» пучка при совместном влиянии включенной системы компенсации хроматизма и краевых полей квадрупольных линз и поворотных магнитов для кольца A (*a*) и кольца B (*б*). Значения динамической апертуры составляют DA_A = 77 мм · мрад, DA_B = 97 мм · мрад

«область жизни» пучка при совместном влиянии включенной системы компенсации хроматизма и краевых полей квадрупольных линз и поворотных магнитов для колец A и B. Значения динамической апертуры составляют DA_A = 77 мм · мрад, DA_B = 97 мм · мрад.

Мы исследовали также влияние на DA систематических и случайных нелинейных возмущений магнитного поля в дипольных магнитах и квадрупольных линзах. Оказалось, что это влияние достаточно незначительно по сравнению с действием краевых полей и системы коррекции хроматичности.

2. ДИСКУССИЯ

Переход к симметричной структуре и выбор рабочей точки $Q \sim 9,1$ позволяет резко уменьшить влияние краевых эффектов на DA при сохранении номинального значения β -функции в точке встречи $\beta_{x,y} = 0,35$ м. При этом, однако, увеличивается влияние системы коррекции хроматичности. Тем не менее, с учетом совместного действия обоих этих факторов, DA значительно превышает аксептанс камеры.

Рабочая точка с $Q \approx n + 0,1$ экспериментально изучалась на RHIC и на протонантипротонном накопителе FNAL. На коллайдере FNAL было отмечено ухудшение стабильности работы машины по сравнению с рабочей точкой $Q \approx n+0,42$, что естественно ввиду близости внешнего резонанса. Следует также иметь в виду, что коллайдер NICA отличается от этих установок большим кулоновским сдвигом ($\Delta Q \leq 0,05$). При работе в данной рабочей точке частицы с ростом интенсивности надвигаются на параметрический резонанс, что может привести к росту эмиттанса пучка и потерям частиц. Этот эффект необходимо тщательно исследовать.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мешков И. Н.* Проект NICA в ОИЯИ. Доклад на 11-м междунар. совещ. по охлаждению пучка и сопутствующим темам, Алушта, 2011.
- 2. Levichev Eu. B., Piminov P. A. Analytic Estimation of the Non-Linear Tune Shift Due to the Quadrupole Magnet Fringe Field. Preprint BINP 2000-014.
- 3. *Большаков А. Е., Зенкевич П. Р.* Влияние краевых полей на динамику частиц в коллайдере NICA. Доклад представлен на Симпозиум им. В. П. Саранцева, Алушта, 2017.
- 4. *Herr W.* Particle Tracking with MAD-X Including LHC Beam–Beam Interactions. LHC Project Note 344. CERN, 2004.
- 5. Giovannozzi M. et al. // Proc. of Part. Accel. Conf., Vancouver, May 12-16, 1997.