ИЗУЧЕНИЕ ВОЗДЕЙСТВИЯ ЭЛЕКТРОННОГО ОБЛУЧЕНИЯ НА МНОГОСЛОЙНЫЕ ПОЛИМЕРНЫЕ МАТЕРИАЛЫ ПОСЛЕ ОБРАБОТКИ И ХРАНЕНИЯ В ТЕЧЕНИЕ ОДНОГО ГОДА

В. Т. Тарабасюк, А. А. Семкина, В. И. Соловьева, Д. Д. Федотова, В. П. Филиппович, Н. Е. Строкова, О. В. Баранов, А. В. Прокопенко, П. А. Быстров, С. Н. Пучков

Всероссийский научно-исследовательский институт технологии консервирования, Видное, Россия

Московский государственный университет им. М. В. Ломоносова, Москва

Институт элементоорганических соединений им. А. Н. Несмеянова РАН, Москва

Национальный исследовательский ядерный университет «МИФИ», Москва

Московский радиотехнический институт РАН, Москва

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, Москва

Работа посвящена исследованию многослойного пленочного материала полиамид/полиэтилен толщиной 80 мкм при его обработке электронным пучком на компактной установке радиационной стерилизации с местной биозащитой дозами от 3 до 18 кГр. Изучены изменения физико-механических и барьерных параметров полиmericного материала, которые могут отразиться на сроках хранения сельскохозяйственной продукции.

This study examines the multilayered film material polyamide/polyethylene with a thickness of 80 μm when it was processed by an electron beam on a compact radiation sterilization installation with the local biosecurity by doses from 3 to 18 kGy. The changes in physico-mechanical and barrier parameters of the polymer material, which can affect the shelf life of agricultural products, are studied.

PACS: 61.80.-x

ВВЕДЕНИЕ

Для сохранения эффекта стерилизации и увеличения сроков хранения пищевых продуктов радиационную обработку проводят в упаковке. В основном используют многослойные пленочные материалы различного состава. Комбинируя несколько слоев различных полимеров, производитель получает возможность создавать пленочные материалы с заданными свойствами для каждого вида сельхозпродукции с учетом дыхательных процессов. При обработке пищевых продуктов электронами кроме уничтожения болезненетворных бактерий и вирусов могут происходить химические процессы. Например, при

1E-mail: vitfil1@rambler.ru
2E-mail: pav14@mail.ru
радиационной стерилизации в полимерах можно наблюдать процессы сшивки и деструкции [1–3]. Именно поэтому была поставлена задача — изучить влияние радиационной обработки на структуру многокомпонентного полимерного материала после облучения и при его хранении.

МЕТОДИКА И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Для исследования использовался полимерный упаковочный материал полиамид/полиэтилен (PA/PE) в соотношении 20:80, толщиной 80 мкм производства Дмитровского завода гибкой упаковки. Структурные группы данного полимерного материала представлены на рис. 1.

Радиационную обработку проводили в Центре радиационных технологий МРТИ РАН на компактной установке радиационной стерилизации с местной биозащитой с энергией ускоренных электронов 5 МэВ, мощностью пучка электронов 1,5 кВт. Для анализа изменений в химическом составе пленки использовался ИК-спектрометр ФСМ 1201 (Россия) со спектральным диапазоном 400–4000 см⁻¹ и разрешением 1 см⁻¹. Образцы пленки помещали в опытную ячейку строго перпендикулярно световому потоку, и снимали спектр поглощения полимерного материала до и после облучения. Краевой угол смачивания изучали на приборе TRACKER. При измерении образец размером 5 × 3 см обезжиривается спиртом и устанавливается на подставку измерительной ячейки. Измерительную ячейку устанавливают на столик-держатель и включают лампу осветителя. С помощью микропипетки осторожно наносят каплю жидкости (1 мм³) на поверхность исследуемого образца. Затем происходит фиксирование прибором фотоснимка капли [4]. Образцы полимерной пленки PA/PE подвергались радиационному облучению при дозе от 3 до 18 кГр, облучение повторялось 10 раз. Контроль за поглощенными дозами велся с использованием стандартных дозометрических пленок. Далее проводились исследования структуры образцов до, после облучения и после 1 года хранения, для этого снимали ИК-спектры в интервале 400–5000 см⁻¹. Наиболее характерные частоты поглощения функциональных групп исследуемого полимерного материала представлены в работе [5]. Результаты интенсивности полос поглощения функциональных групп в полимерном материале при различной дозе облучения и после 1 года хранения показаны на рис. 2.

\[
\begin{array}{cccc}
\text{CH}_2 & \text{CH}_2 & \text{H} & \text{O} \\
\text{PE-слой} & \text{PA-слой} & (\text{CH}_2)_5 & \text{C} \\
\end{array}
\]

Рис. 1. Структурная формула полимерного материала PA/PE
Рис. 2. Влияние доз облучения быстрыми электронами на интенсивность полос поглощения функциональных групп в образце PA/PE

Рис. 3. Влияние доз облучения быстрыми электронами на параметр краевого угла смачивания в образце PA/PE

СПИСОК ЛИТЕРАТУРЫ