ОБ УСКОРЕНИИ ПОТОКА ЧАСТИЦ ЛАЗЕРНОЙ ДЕЙТЕРИЕВОЙ ПЛАЗМЫ В БЫСТРОНАРАСТАЮЩЕМ МАГНИТНОМ ПОЛЕ

К. И. Козловский, А. Е. Шиканов, Е. Д. Вовченко, А. А. Исаев¹

Национальный исследовательский ядерный университет «МИФИ», Москва

Рассматривается модель ускорения лазерной плазмы, содержащей ионы тяжелого водорода, быстронарастающим магнитным полем для генерации нейтронов. Приводятся результаты расчета ускорения сгустка лазерной плазмы в момент его образования. Расчеты проводились для тороидального сгустка плазмы, образуемого под действием лазерного импульса, сфокусированного в тонкое кольцо радиусом r на поверхность твердой мишени, содержащей дейтерий и смещенной относительно геометрического центра кольцевого проводника на расстояние z в сторону лазера. Предложенная модель носит достаточно общий характер, так как любое азимутально-симметричное плазменное образование может быть представлено в виде совокупности подобных тороидальных укрупненных плазменных частиц. В результате был разработан алгоритм расчета начального поля ускорений и составлена соответствующая программа, с использованием которой был проведен численный эксперимент с целью выяснения оптимальных временных режимов ускорения дейтронов, а также геометрических параметров r и z, необходимых для постановки физического эксперимента на вакуумной установке, моделирующей рассматриваемый процесс ускорения.

The model of the acceleration of a laser plasma containing ions of heavy hydrogen by a rapidly growing magnetic field for neutron generation is examined. In this work, the results of calculating the acceleration of a laser plasma bunch at the time of its formation are presented. Calculations were carried out for a toroidal plasma bundle formed by a focused laser pulse in a thin ring of radius r on the surface of a solid target containing deuterium and displaced relative to the geometric center of the annular conductor at the distance z towards the laser. The proposed model is quite general in nature, as any azimuthally symmetric plasma formation can be represented as a set of similar toroidal enlarged plasma particles. As a result, an algorithm for calculating the initial field of accelerations was developed and a corresponding program was compiled. With the use of this program a numerical experiment was carried out in order to define the optimal temporal deuteron regimes of deuteron acceleration, as well as the geometric parameters r and z, which are necessary for setting up a physical experiment on a vacuum installation simulating the considered acceleration process.

PACS: 52.38.Kd

В настоящее время для генерации быстрых нейтронов, а также при реализации ряда имплантационных и экологических технологий часто используются устройства на основе электростатических ускорителей ионов тяжелого водорода. Недостатком этих устройств

¹E-mail: isaev@lenta.ru

являются ограничения на ток и плотность тока ускоренных ионов, связанные с влиянием пространственного заряда, низкий коэффициент полезного действия при ускорении ионов и наличие сопутствующего рентгеновского излучения, возбуждаемого электронами ионно-электронной, автоэлектронной или взрывной эмиссии. Эти недостатки в значительной мере устраняются при реализации эффективного ускорения квазинейтральной плазмы.

В работе [1] была рассмотрена схема ускорения лазерной плазмы в быстронарастающем магнитном поле, формируемом при разряде накопительной емкости C, заряженной до напряжения U, на контур в виде проводящего кольца радиусом ρ . Схема такого ускорения плазмы для последующей генерации нейтронов представлена на рис. 1. Плазма образуется в момент t, отсчитываемый от начала разряда накопительной емкости, в результате фокусировки излучения импульсного лазера на мишень из диэлектрического дейтерированного материала. Из-за нарастания магнитного поля в плазме возбуждается вихревой электрический ток. При взаимодействии этого тока с магнитным полем возникает продольная пондеромоторная сила, ускоряющая плазменный сгусток.

Рис. 1. Схема ускорения сгустка лазерной плазмы в момент его образования: 1 — плазмообразующая мишень; 2 — кольцевой контур с током; 3 — емкостный накопитель энергии; 4 — разрядник; 5 — нейтронообразующая мишень

В данной работе приводятся результаты расчета ускорения сгустка лазерной плазмы в момент его образования. Расчеты проводились для тороидального сгустка плазмы, образуемого под действием лазерного импульса, сфокусированного в тонкое кольцо радиусом r и шириной a на поверхность твердой мишени, содержащей дейтерий и смещенной относительно геометрического центра кольцевого проводника на расстояние z в сторону лазера (см. рис. 1). Такая фокусировка может осуществляться с помощью оптических конусов (аксиконов) или специальных голографических линз. Модель носит достаточно общий характер, так как любое азимутально-симметричное плазменное образование может быть представлено в виде совокупности подобных тороидальных укрупненных плазменных частиц.

В основу используемой модели легли следующие физические представления. После разряда накопительной емкости на кольцевой проводник (суммарная индуктивность разрядной цепи L) создается нарастающее во времени магнитное поле. Его значение в области образования плазменного сгустка определяется вектором индукции $B(r, z, t) = \{B_r(r, z, t), B_z(r, z, t)\}$, который может быть с достаточной степенью точности описан следующими выражениями [2]:

$$B_{r,z}(r,z,t) = B_{0r,z}(r,z) \exp\left[-\left(\frac{R}{2L}\right)t\right] \sin\left[(LC)^{-1/2}t\right],\tag{1}$$

Об ускорении потока частиц лазерной дейтериевой плазмы 1011

$$B_{0r,z}(r,z) = \left[\frac{\mu_0 U\left(\frac{C}{L}\right)^{1/2}}{2\pi}\right] \left(\frac{\rho}{r}\right)^{1/2} \frac{\partial}{\partial z} \left[\frac{2E(k)}{k} - \left(\frac{2}{k} - k\right) K(k)\right],$$
$$B_{0z}(r,z) = \left[\frac{\mu_0 U\left(\frac{C}{L}\right)^{1/2}}{2\pi}\right] r^{-1} \frac{\partial}{\partial r} \left\{ (r\rho)^{1/2} \left[\left(\frac{2}{k} - k\right) K(k) - \frac{2E(k)}{k}\right] \right\},$$

где μ_0 — магнитная проницаемость вакуума; R — активное сопротивление разрядного контура; K(k) и E(k) — полные эллиптические интегралы 1-го и 2-го рода соответственно,

$$k = \frac{2(r\rho)^{1/2}}{[(\rho+r)^2 + z^2]^{1/2}}.$$

В результате изменения во времени магнитного поля возникает азимутальное вихревое электрическое поле, которое в соответствии с законом Ленца определяется следующим приближенным выражением:

$$E_{\varphi}(r,z,t) \approx -\left(\frac{r}{2}\right) \frac{d}{dt} [B_z(r,z,t)].$$
⁽²⁾

В области кольцевого плазменного образования возникают также знакопеременные азимутальные электрические поля, связанные с пересечением движущейся плазмой силовых линий магнитного поля и пропорциональные компонентам вектора скорости. Однако эти поля могут отвечать только за перераспределение запасенной на начальной стадии образования плазмы кинетической энергии поперечного движения в кинетическую энергию продольного движения. Значит, в этом случае речь может идти только об увеличении или уменьшении энергии продольного движения отдельных фрагментов лазерной плазмы не более чем в два раза на протяжении всего процесса разлета, что не представляет интереса для поставленных выше задач. Таким образом, в дальнейшем рассмотрении указанным эффектом можно пренебречь.

Лазерная плазма обладает конечной проводимостью σ , которая на начальной стадии разлета с достаточной точностью определяется формулой Спитцера [3] с поправкой на параметр замагниченности Холла — $\Omega = \omega_{\Pi} / \nu$ [4]:

$$\sigma \approx \frac{2 \cdot 10^4 \theta^{3/2}}{\{\Lambda [1 + \Omega^2]\}} \ [\text{OM} \cdot \text{M}],\tag{3}$$

где

$$\omega_{\Pi} = \frac{eB_z(r, z, t)}{m} \tag{4}$$

— круговая частота Лармора; е, т — заряд и масса электрона соответственно;

$$\nu \approx 2 \cdot 10^{-12} n \Lambda \theta^{-3/2} \tag{5}$$

частота электрон-ионных столкновений [3];

$$\Lambda \approx \ln\left(7.5 \cdot 10^{-6} \theta^{3/2} n^{-1/2}\right) \tag{6}$$

— кулоновский логарифм [3]; θ и n — соответственно начальная температура, выраженная в эВ, и электронная плотность лазерной плазмы, усредненные по объему плазменного сгустка.

Начальное значение электронной плотности плазмы можно оценить, используя опубликованное в работе [6] выражение, связывающее массовую плотность лазерной плазмы *g* с помощью лазерного излучения:

$$g = B(S, A, Z)W^{1/3}, (7)$$

где B(S, A, Z) — некая функция от плотности S пятна фокусировки излучения на плазмообразующую мишень, средней атомной массы A вещества мишени, порядкового номера Z элемента, составляющего вещество мишени. Переходя в этом выражении от мощности лазерного излучения к плотности мощности, а от массовой плотности к электронной, можно получить для случая дейтерированного полиэтилена $(CD_2)_n$ (наиболее оптимальный материал плазмообразующей мишени) следующее выражение для начальной электронной плотности:

$$n \approx 2 \cdot 10^{19} q^{1/3} (ra)^{-1/6} \text{ m}^{-3}.$$
 (8)

Это выражение устанавливает зависимость электронной плотности от плотности мощности лазерного излучения и геометрических размеров плазменного сгустка для длины волны лазерного излучения ~ 1 мкм.

Среднюю начальную температуру плазмы θ , используя данные, опубликованные в работе [5], можно выразить через плотность мощности лазерного излучения q на поверхности плазмообразующей мишени. В рассматриваемом случае эта связь будет определяться следующим приближенным выражением:

$$\theta \approx 10^{-6} (q)^{4/9} \ \mathfrak{sB}.\tag{9}$$

Согласно закону Ома в плазме возбуждается азимутальный ток плотностью $j = \sigma E_{\varphi}(r, z)$. При этом на любой элемент единичного объема плазменного сгустка в момент его образования будет действовать продольная пондеромоторная сила

$$F_z(r, z, t) = \sigma E_{\varphi}(r, z, t) B_r(r, z, t).$$
(10)

Эффект начального ускорения более наглядно можно описать в терминах поля ускорений:

$$f(r,z) = \frac{\left[\sigma E_{\varphi}(r,z,t)B_r(r,z,t)\right]}{Mn},\tag{11}$$

где *М* — масса дейтрона.

На основании формул (1)–(11) был разработан алгоритм расчета начального поля ускорений и составлена соответствующая программа для персонального компьютера. С использованием этой программы был проведен численный эксперимент с целью выяснения оптимальных временных режимов ускорения дейтронов, а также значений геометрических параметров r и z, необходимых для постановки реального физического эксперимента на вакуумной установке, моделирующей рассматриваемый процесс ускорения.

В численном эксперименте значения плотности потока лазерного излучения рассматривались в диапазоне $q = 10^{13} - 10^{15}$ Вт/м², а параметры разрядного контура варьировались в следующих пределах: $C = 10^{-7} - 10^{-6}$ Ф, $L = 10^{-8} - 5 \cdot 10^{-7}$ Гн, U = 10 - 50 кВ, $R = 10^{-2} - 1$ Ом. Указанные диапазоны представляются вполне реальными для создания действующего малогабаритного ускорителя плазмы. Предварительные аналитические расчеты показывают, что им соответствует диапазон изменения начальной скорости нарастания магнитного поля $10^{6} - 10^{8}$ Тл/с с его максимальной амплитудой несколько тесла.

На рис. 2 в качестве примера представлены характерные зависимости начального поля ускорений от параметров r и z, рассчитанные для следующих значений: $C = 10^{-6} \Phi$, $L = 10^{-7}$ Гн, R = 0,1 Ом, U = 20 кВ, $\rho = 0,005$ м, $a = 5 \cdot 10^{-4}$, $q = 10^{13}$ Вт/м², при оптимальном времени задержки t_0 .

Рис. 2. Характерные зависимости начального поля ускорений от параметров r и z. a) Семейство зависимостей поля ускорений f(r, z), z — текущая координата (ось абсцисс), r — параметр. δ) Семейство зависимостей поля ускорений f(r, z), r — текущая координата (ось абсцисс), z — параметр

Анализ результатов численного эксперимента позволяет сделать следующие выводы.

1. Оптимальное время задержки между началами электрического и лазерного импульсов составляет

$$t_0 \approx \frac{(LC)^{1/2}}{2} \operatorname{tg}^{-1} \left[\frac{2}{R} \left(\frac{L}{C} \right)^{1/2} \right].$$

2. Оптимальный режим ускорения достигается при фокусировке лазерного излучения на мишень, расположенную на расстоянии $z \approx 0.15 \rho$ от центра контура с током в направлении разлета плазмы.

3. Ускорение фрагментов лазерной плазмы растет монотонно с ростом радиуса кольца фокусировки, достигая максимума при $r \approx 0.9 \rho$.

4. Началу процесса ускорения соответствует рост продольной скорости движения ионов плазмы за 1 нс более чем в 2 раза.

5. Ускорение монотонно растет с увеличением параметра $U^2 C^{1/2} / L^{3/2}$. При этом характер роста ускорения близок к линейному.

1014 Козловский К. И. и др.

6. На плазменный сгусток действует также поле пондеромоторных сил, направленных к оси симметрии ускоряющей системы. Поэтому радиус плазменного сгустка уменьшается. В процессе его уменьшения за характерные времена 10–100 нс (в зависимости от параметров магнитной системы) резко (практически до нуля) спадает продольная ускоряющая сила в результате спада радиальной составляющей магнитного поля.

На основании трех последних выводов можно сделать прогноз о возможности генерации нейтронов с использованием лазерной плазмы, ускоренной в нестационарном магнитном поле. При этом время эффективного ускорения будет составлять 10–100 нс. За это время продольная скорость фронта плазменного образования может увеличиться с учетом спада радиальной составляющей магнитного поля и электронной плотности плазмы в результате ее расширения и протекания рекомбинационных процессов в несколько десятков раз. Таким образом, если принять для указанных выше параметров ускоряющей системы в соответствии с данными работы [8] значение начальной скорости раздела лазерной плазмы $\sim 10^5$ м/с, то можно утверждать, что в процессе ускорения плазмы будут получены дейтроны с энергией в несколько десятков килоэлектронвольт. Такие значения энергии дейтронов вполне приемлемы для генерации нейтронов на твердой мишени, содержащей тритий.

СПИСОК ЛИТЕРАТУРЫ

- Цыбин А. С., Козловский К. И., Кузнецов А. Ю., Шиканов А. Е. Ускоритель лазерной плазмы для радиационно-физических исследований // Тр. 12-й Междунар. конф. по радиационной физике и химии неорганических материалов, Томск, Россия, 2003. С. 511–514.
- 2. Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. М.: Наука, 1982. С. 164.
- 3. Хора Х. Физика лазерной плазмы. М.: Энергоатомиздат, 1986. С. 37-38.
- 4. Чен Ф. Введение в физику плазмы. М.: Мир, 1987. С. 167.
- Бойко В. А., Крохин О. Н., Склизков Г. В. Исследование параметров и динамики лазерной плазмы при острой фокусировке излучения на твердую мишень // Тр. ФИАН СССР. 1974. Т. 76. С. 186– 228.
- Krokhin O.N. High Temperature and Plasma Phenomena by Laser Radiation // Proc. of Intern. School Phys., N.Y., 1971. P. 278–305.
- 7. Вергун И.И., Козловский К.И., Козырев Ю.П., Цыбин А.С., Шиканов А.Е. Исследование интенсивного лазерного источника дейтронов // ЖТФ. 1979. Т. 49, № 9. С. 2003–2006.