ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ

# ПРОЯВЛЕНИЕ ЗЕРКАЛЬНО-АСИММЕТРИЧНОЙ ДЕФОРМАЦИИ В СТРУКТУРЕ СВЕРХТЯЖЕЛЫХ ЯДЕР

Е.В. Мардыбан<sup>а, б, 1</sup>, Т.М. Шнейдман<sup>а, в</sup>, Е.А. Колганова<sup>а, б</sup>, Р.В. Джолос<sup>а, б</sup>

<sup>а</sup> Объединенный институт ядерных исследований, Дубна

<sup>6</sup> Государственный университет «Дубна», Дубна, Россия

<sup>в</sup> Казанский федеральный университет, Казань, Россия

Рассчитаны характеристики полос переменной четности в трансфермиевых ядрах с Z = 102 - 110. Предсказаны величины энергий нижайших состояний отрицательной четности и переходных дипольного, квадрупольного и октупольного моментов. Получены оценки критических угловых моментов, при которых происходит переход от колебательного движения к стабильной зеркально-асимметричной деформации. Расчеты выполнены в кластерной модели двойной ядерной системы.

The characteristics of alternating parity bands in transfermium nuclei with Z = 102-110 are calculated. The energies of the lowest negative-parity states and transitional dipole, quadrupole and octupole moments are predicted. The critical angular momenta, at which the transition from octupole vibrations to a stable reflection-asymmetric shape occurs, are estimated. The calculations were performed within the cluster model of a dinuclear system.

PACS: 21.10.Re; 21.10.Ky; 21.60.Ev

## введение

В последнее время акцент в исследовании свойств сверхтяжелых ядер сдвигается в сторону изучения ядерной структуры. Большое количество новой спектроскопической информации получено для ядер с зарядами  $Z \ge 96$ . К примеру, в ядрах <sup>252,254</sup> No были изучены ротационные полосы переменной четности вплоть до угловых моментов 20–22 [1]. Изучение электромагнитных переходов между вращательными уровнями, построенными на основном и низколежащих возбужденных состояниях, слабозаселенных изомерных состояний, а также тонкой структуры  $\alpha$ -распада является сложной экспериментальной задачей в связи с малыми сечениями получаемых сверхтяжелых ядер. Однако совершенствование детекторных систем уже позволяет проводить измерения в схемах совпадения  $\alpha - \gamma$  и  $\alpha$ -электронной конверсии [1–13]. Отметим также, что новый циклотронный комплекс DC-280 («Фабрика тяжелых ионов»), запущенный

<sup>&</sup>lt;sup>1</sup>E-mail: mardyban@theor.jinr.ru

в ЛЯР (ОИЯИ), позволяет существенно увеличить выход сверхтяжелых ядер, что делает возможным  $\gamma$ -спектроскопию ядер на самом краю карты нуклидов.

Знание структуры сверхтяжелых ядер необходимо для тестирования и дальнейшей проработки моделей среднего поля. Изучение спектроскопических характеристик ядер в трансфермиевой области важно для определения последовательности одночастичных уровней и расположения щелей между оболочками, что может пролить свет на возможность существования следующего за свинцом дважды магического ядра. Из величин моментов инерции могут быть извлечены параметры деформации [1–3]. Далее эти параметры деформации могут быть сравнены с предсказаниями, полученными в рамках различных моделей [14,15]. Изучая стабильность ядер по отношению к вращению, можно определить максимально возможные угловые моменты [1,10], которые дают вклад в полное слияние и формирование сверхтяжелых элементов [13]. Таким образом, понимание структуры сверхтяжелых ядер и их распадных характеристик может стимулировать дальнейший прогресс в получении новых сверхтяжелых ядер.

Обнаружение низколежащих коллективных состояний отрицательной четности в актинидах свидетельствует о том, что форма этих ядер достаточно мягка по отношению к деформациям, нарушающим зеркальную симметрию [16, 17]. Как было показано в [18–23], сильные пространственно-асимметричные корреляции могут быть объяснены тем, что волновая функция низколежащих состояний актинидов имеет существенную  $\alpha$ -кластерную компоненту. Кажется очевидным предположить те же свойства и для трансфермиевых ядер, также являющихся сильными  $\alpha$ -распадчиками, что предполагает большой вес компоненты волновой функции с  $\alpha$ -кластером, сформированным на поверхности ядра.

В данной работе применим кластерную модель к описанию низколежащих состояний отрицательной четности в изотопах No, Rf, Sg, Hs и Ds.

#### модель

Модель базируется на предположении, что волновую функцию тяжелого ядра можно разделить на компоненты, отвечающие двойным ядерным системам (ДЯС) и моноядру. Под ДЯС понимается система двух фрагментов (кластеров)  $(A_1, Z_1, \beta_1) + (A_2, Z_2, \beta_2)$  в касании. Каждый фрагмент характеризуется массой  $A_i$ , зарядом  $Z_i$  и параметром квадрупольной деформации  $\beta_i$  (i = 1, 2). Под моноядром понимается бескластерная компонента волнововой функции, когда масса одного из фрагментов ДЯС равна нулю:  $(A_1 = A, Z_1 = Z, \beta_1 = \beta_m)$  или  $(A_2 = A, Z_2 = Z, \beta_2 = \beta_m)$ . Моноядро и фрагменты ДЯС предполагаются либо сферическими, либо квадрупольно-деформированными. Таким образом, единственный источник зеркально-асимметричной деформации материнского ядра — это вклад асимметричных ДЯС в волновую функцию. Каждая ДЯС характеризуется координатами массовой  $\xi = A_2/A$  и зарядовой  $\xi_Z = Z_2/Z$  асимметрии. Значения  $\xi = 0$  и  $\xi = 1$  отвечают конфигурациям моноядра. Будем предполагають  $\xi$  и  $\xi_Z$  непрерывными координатами [18, 22, 23].

Относительный вклад различных ДЯС в волновую функцию ядра с угловым моментом I определяется потенциальной энергией  $U(\xi, \xi_Z, I)$ . Для кластерных систем  $(\xi \neq 0, \xi \neq 1)$ :

$$U(\xi,\xi_Z,I) = V(\xi,\xi_Z) + V_{\rm rot}(\xi,\xi_Z,I) - B_1(\xi,\xi_Z) - B_2(\xi,\xi_Z) + B,$$
(1)

где  $B_1$ ,  $B_2$  — энергии связи кластеров;  $V(\xi, \xi_Z)$  — энергия их взаимодействия, а  $V_{\rm rot}(\xi, \xi_Z, I)$  — вращательная энергия ДЯС как целого. Энергия связи B материнского ядра включена, чтобы нижайшее решение уравнения Шредингера с потенциалом (1) имело нулевую энергию при I = 0. Для энергий связи использовались экспериментальные значения [26]. Так как мы рассматриваем сильно асимметричные ДЯС, эффектом поляризации можно пренебречь и деформации кластеров брать как для основных состояний [15]. Величина  $V(\xi, \xi_Z)$  рассчитывалась как сумма кулоновского  $V_{\rm coul}(\xi, \xi_Z)$  и ядерного  $V_N(\xi, \xi_Z)$  взаимодействий. Для расчета  $V_N(\xi, \xi_Z)$  использовалась процедура двойной свертки с зависящими от плотности ядро-ядерными силами [27,28]. Детали расчета представлены в работе [19]. Плотности фрагментов ДЯС брались в виде распределения Ферми с параметрами радиуса и диффузности, определенными, как в работе [30].

Так как потенциальные энергии ДЯС с легким кластером, тяжелее, чем  $\alpha$ -частица, резко растут, при описании нижайших возбужденных состояний можно пренебречь вкладом более симметричных систем и рассмотреть лишь малые колебания вблизи  $\xi = 0$ . В этой области основной вклад дают моноядро и  $\alpha$ -кластерная ДЯС, поэтому можно не рассматривать зарядовую асимметрию как независимую координату и положить  $\xi_Z = \xi(A/2Z)$ . В дальнейшем предполагаем только коллективные колебания ядра по координате массовой асимметрии  $\xi$ . Отметим, что в ряде случаев для корректного описания эксперимента необходимо учитывать независимое движение как по  $\xi$ , так и по  $\xi_Z$  [31].

Для расчета вращательной энергии

$$V_{\rm rot}(\xi,\xi_Z,I) = \frac{\hbar^2}{2} \frac{I(I+1)}{\Im(\xi,\xi_Z)}$$
(2)

необходимо знание момента инерции  $\Im(\xi, \xi_Z)$ . Параметризуем его как

$$\Im(\xi,\xi_Z) = c\left(\Im_1^{\mathrm{r}} + \Im_2^{\mathrm{r}} + m_0 \frac{A_1 A_2}{A} R_m^2\right),\tag{3}$$

где  $\Im_{1,2}^{\rm r}$  — твердотельные моменты инерции фрагментов ДЯС;  $R_m$  — расстояние между фрагментами, отвечающее точке касания, а величина c = 0.85 фиксирована для всех рассмотренных ядер [18, 19]. Качественно близость момента инерции ДЯС к твердотельному значению объясняется тем, что нуклоны одного фрагмента частично блокируют свободные уровни другого фрагмента, что приводит к ослаблению спаривательного взаимодействия и, как результат, к увеличению моментов инерции.

Потенциальная энергия моноядра ( $\xi = 0, \xi = 1$ ) может быть формально рассчитана как

$$U(\xi = 0, I) = -B_m + B + \frac{\hbar^2}{2} \frac{I(I+1)}{\Im_m},$$
(4)

где  $B_m$  — энергия связи моноядра. Поскольку ядро представляет собой суперпозицию моноядра и кластерных систем, то  $B_m \neq B$ . Так как задача расчета энергии основного состояния ядра не ставится, а изучаются нижайшие возбуждения ядра относительно основного состояния, в расчете энергии связи моноядра нет необходимости. Величину  $B_m$  можно зафиксировать, потребовав, чтобы нижайшее решение уравнения Шредингера, описывающего движение по координате массовой асимметрии, имело нулевую

энергию. Момент инерции моноядра  $\Im_m$  рассчитывался в модели принудительного вращения с учетом спаривания [32].

Потенциальная энергия ДЯС не зависит от нумерации фрагментов:  $A_1 \leftrightarrow A_2$ ,  $Z_1 \leftrightarrow Z_2$ . Удобно заменить координату  $\xi$  на координату

$$x = \begin{cases} \xi, & A_2 \leqslant A_1, \\ \xi - 1, & A_2 > A_1. \end{cases}$$
(5)

Тогда потенциальная энергия будет симметричной функцией *x*. Для расчетов используем гладкую параметризацию потенциальной энергии:

$$\tilde{U}(x,I) = \sum_{k=0}^{3} a_{2k}(I) x^{2k}.$$
(6)

Параметры  $a_{2k}(I)$  определяются из рассчитанных по формулам (1) и (4) значений для моноядра (x = 0) и ДЯС с легким кластером <sup>4</sup>He  $(|x| = x_{\alpha})$  и <sup>7</sup>Li  $(|x| = x_{Li})$ . Значение  $a_0(I = 0)$  выбирается так, чтобы решение уравнения Шредингера с потенциальной энергией (6) имело нулевую энергию при I = 0. Для параметра  $a_6(I)$  выбираем минимальное значение, обеспечивающее рост потенциальной энергии при  $|x| > x_{Li}$ .

Уравнение Шредингера, описывающее динамику коллективного движения ядра по координате массовой асимметрии *x*, можно записать как

$$\left[-\frac{\hbar^2}{2B_x}\frac{d^2}{dx^2} + \tilde{U}(x,I)\right]\Psi_n(x,I) = E(I)\Psi_n(x,I),$$
(7)

где  $B_x = B_{\xi}$  — эффективный массовый параметр. Следуя [19, 30], берем  $B_{\xi} = 25 \cdot 10^4 m_0$ , где  $m_0$  — масса нуклона.

Так как потенциальная энергия U(x, I) инвариантна относительно преобразования  $x \to -x$ , волновые функции  $\Psi^p(x, I)$  являются либо симметричными (p = +1), либо антисимметричными (p = -1) функциями x. Симметризуя волновые функции по отношению к преобразованию  $\hat{P} \exp [-i\pi \hat{I}_1]$ , соответствующему зеркальному отражению и одновременному повороту на угол  $\pi$  вокруг лабораторной оси y, получаем, что в случае K = 0 для состояний с четным угловым моментом необходимо брать нижайшее решение положительной четности, а для состояний с нечетным угловым моментом — нижайшее решение отрицательной четности. Волновые функции ротационных состояний полосы переменной четности четно-четного ядра имеют вид

$$\Phi_{p,IM,K=0} = \Psi_p(x,I) \left(\frac{1+p(-1)^I}{2}\right) Y_{IM}(\Omega),$$
(8)

где Ω — углы, описывающие ориентацию ядра по отношению к лабораторной системе координат, а  $Y_{IM}$  — сферические функции.

#### РЕЗУЛЬТАТЫ

Решая уравнение (7), мы рассчитали полосы переменной четности для различных изотопов No, Rf, Sg, Hs и Ds. Для анализа жесткости ядра по отношению к зеркально-асимметричной деформации удобно использовать величину расщепления по четности [33], определенную как

$$\Delta E(I) = (-1)^{I} [E_{inter}(I) - E(I)],$$

$$E_{inter}(I) = \frac{1}{2} [E(I+1) + E(I-1)] - \frac{1}{8} [E(I+3) - 2E(I+1) + E(I-1)].$$
(9)

Как показано в работе [34], величина расщепления по четности может быть с хорошей точностью аппроксимирована выражением

$$\Delta E(I) = \Delta E(0) f\left[\frac{I}{\sqrt{2}I_{\text{crit}}}\right],\tag{10}$$

где

$$f(y) = \frac{y^2}{2} e^{-y^2} \coth \frac{y^2}{2}$$
(11)

и  $\Delta E(0) = E(1^{-})$ . Величины  $\Delta E(0)$  и критического углового момента  $I_{\rm crit}$ , необходимые для расчета расщепления по четности (10), приведены в таблице. Отметим, что энергии состояний  $E(1^{-}) = \Delta E(0)$  лежат в диапазоне 0,300–0,900 МэВ. Расчеты показывают, что наиболее мягкими по отношению к октупольной деформации оказываются ядра <sup>268</sup>Ds и <sup>274</sup>Ds.

С практической точки зрения наибольший интерес представляют энергии нижайших состояний отрицательной четности  $E(1^-)$ . Можно получить простую аппроксимацию этой величины, исходя только из экспериментально доступной информации по энергиям  $Q_{\alpha}$   $\alpha$ -распада. Предполагая, что для I = 0 энергия  $\alpha$ -частичной ДЯС выше энергии моноядра, что справедливо для всех рассмотренных ядер, можно получить следующее простое выражение, связывающее энергию  $E_{A,Z}(1^-) \equiv \epsilon(A,Z)$  для изотопа с массой A с энергией  $E_{A_0,Z}(1^-) \equiv \epsilon(A_0,Z)$  более легкого изотопа того же элемента с массой  $A_0 < A$ :

$$\epsilon(A,Z) = \epsilon(A_0,Z) \left[ 1 + \frac{Q_\alpha(A,Z) - Q_\alpha(A_0,Z)}{2m(A,Z)\epsilon(A_0,Z)^2} \right],\tag{12}$$

где  $m(A,Z) = 25 \cdot 10^4 m_0 (8/A)^2$ . Выражение (12) позволяет оценить энергию нижайшего состояния отрицательной четности тяжелого ядра, зная эту энергию для более легкого изотопа того же элемента. Отметим, что справедливость оценки (12) базируется на предположении о кластерной природе зеркально-асимметричной моды в тяжелых ядрах и на важной роли  $\alpha$ -кластерной ДЯС. Действительно, на рисунке проведено сравнение энергий  $E(1^-)$ -состояний, полученных в рамках кластерной модели из решения уравнения (7), с оценками, полученными с помощью (12). В качестве энергии 1<sup>-</sup>-состояния наиболее легкого изотопа выбиралось рассчитанное значение. Видно, что приближенное выражение хорошо аппроксимирует точный расчет и воспроизводит тренд изменения энергии  $E(1^-)$  с изменением числа нейтронов.

Рассчитав волновые функции состояний полосы переменной четности, можно вычислить приведенные вероятности электромагнитных переходов  $B(E\lambda, I_i \rightarrow I_f)$ . Предполагая предел сильной связи, эти величины можно связать с внутренними переходными электрическими моментами ядра. Для дипольного  $D_0$ , квадрупольного  $Q_2$ 

Начальное расщепление по четности  $\Delta E(0)$ , критический угловой момент  $I_{\rm crit}$  для различных изотопов ядер с Z = 102-110. Величины переходных дипольного  $D_0$ , квадрупольного  $Q_2$  и октупольного  $Q_3$  моментов для переходов из основного состояния в состояния полосы переменной четности

| Изотоп                           | $\Delta E(0),$ | τ.    | $D_0, e \cdot \phi$ м   | $Q_2, e \cdot \phi M^2$ | $Q_3, e \cdot \phi M^3$ |
|----------------------------------|----------------|-------|-------------------------|-------------------------|-------------------------|
| 1301011                          | МэВ            | Icrit | $(0^+ \rightarrow 1^-)$ | $(0^+ \to 2^+)$         | $(0^+ \rightarrow 3^-)$ |
| $^{250}_{102}$ No                | 0,592          | 16,12 | 0,0092                  | 1046                    | 1920                    |
| $^{252}_{102}$ No                | 0,692          | 16,67 | 0,0056                  | 1019                    | 1749                    |
| $^{254}_{102} m No$              | 0,772          | 19,97 | 0,0039                  | 1024                    | 1646                    |
| $^{256}_{102} m No$              | 0,627          | 16,02 | 0,0100                  | 1109                    | 1898                    |
| $^{258}_{102} m No$              | 0,694          | 17,83 | 0,0075                  | 1064                    | 1777                    |
| $^{260}_{102}$ No                | 0,805          | 20,84 | 0,0044                  | 1067                    | 1634                    |
| $^{262}_{102}$ No                | 0,876          | 22,86 | 0,0033                  | 1023                    | 1547                    |
| $^{254}_{104}$ Rf                | 0,595          | 14,19 | 0,0100                  | 1053                    | 1978                    |
| $^{256}_{104}$ Rf                | 0,732          | 18,84 | 0,0050                  | 1056                    | 1758                    |
| $^{258}_{104}{ m Rf}$            | 0,607          | 15,55 | 0,0110                  | 1138                    | 1999                    |
| $^{260}_{104}$ Rf                | 0,685          | 17,62 | 0,0080                  | 1095                    | 1859                    |
| $^{262}_{104}{ m Rf}$            | 0,824          | 21,25 | 0,0040                  | 1092                    | 1666                    |
| $^{264}_{104}$ Rf                | 0,796          | 20,33 | 0,0053                  | 1099                    | 1707                    |
| $^{266}_{104}$ Rf                | 0,885          | 22,94 | 0,0036                  | 1100                    | 1706                    |
| $^{258}_{106}$ Sg                | 0,661          | 16,98 | 0,0077                  | 1087                    | 1927                    |
| $^{260}_{106}$ Sg                | 0,581          | 14,87 | 0,0130                  | 1125                    | 2101                    |
| $^{262}_{106}$ Sg                | 0,650          | 16,71 | 0,0100                  | 1129                    | 1975                    |
| $^{264}_{106}$ Sg                | 0,794          | 20,58 | 0,0050                  | 1077                    | 1743                    |
| $^{266}_{106}$ Sg                | 0,821          | 21,33 | 0,0047                  | 1081                    | 1715                    |
| $^{268}_{106}$ Sg                | 0,959          | 25,17 | 0,0025                  | 1080                    | 1571                    |
| $^{270}_{106}$ Sg                | 0,751          | 19,51 | 0,0074                  | 1042                    | 1799                    |
| <sup>264</sup> <sub>108</sub> Hs | 0,583          | 14,09 | 0,0180                  | 1168                    | 2280                    |
| <sup>266</sup> <sub>108</sub> Hs | 0,598          | 15,54 | 0,0140                  | 1118                    | 2131                    |
| <sup>268</sup> <sub>108</sub> Hs | 0,705          | 18,23 | 0,0090                  | 1115                    | 1939                    |
| <sup>270</sup> <sub>108</sub> Hs | 0,927          | 24,30 | 0,0030                  | 1062                    | 1640                    |
| <sup>272</sup> <sub>108</sub> Hs | 0,612          | 16,05 | 0,0170                  | 1084                    | 2109                    |
| <sup>274</sup> <sub>108</sub> Hs | 0,603          | 15,93 | 0,0190                  | 1035                    | 2117                    |
| $^{268}_{110}$ Ds                | 0,399          | 12,01 | 0,0380                  | 1172                    | 2790                    |
| $^{270}_{110}$ Ds                | 0,509          | 12,09 | 0,0240                  | 1160                    | 2429                    |
| $^{272}_{110}$ Ds                | 0,703          | 18,28 | 0,0099                  | 1096                    | 1992                    |
| $^{274}_{110}$ Ds                | 0,359          | 11,59 | 0,0550                  | 1152                    | 2957                    |
| $^{276}_{110}$ Ds                | 0,522          | 13,36 | 0,0280                  | 1074                    | 2382                    |
| $^{278}_{110}{ m Ds}$            | 0,801          | 21,07 | 0,0077                  | 891                     | 1796                    |
| $^{280}_{110}$ Ds                | 0,899          | 23,92 | 0,0050                  | 679                     | 1623                    |
| <sup>282</sup> <sub>110</sub> Ds | 0,947          | 25,26 | 0,0040                  | 680                     | 1579                    |

и октупольного  $Q_3$  моментов имеем

$$D_{0}(E1, I_{i}K \to I_{f}K) = \sqrt{\frac{4\pi}{3}} \frac{B(E1, I_{i}K \to I_{f}K)^{1/2}}{C_{I_{i}K10}^{I_{f}K}},$$

$$Q_{\lambda}(E\lambda, I_{i}K \to I_{f}K) = \sqrt{\frac{16\pi}{2\lambda + 1}} \frac{B(E\lambda, I_{i}K \to I_{f}K)^{1/2}}{C_{I_{i}K\lambda0}^{I_{f}K}} \quad (\lambda = 2, 3).$$
(13)



Энергии  $E(1^{-})$  нижайших состояний отрицательной четности в четно-четных изотопах No, Rf, Sg, Hs и Ds. Сплошными линиями представлены результаты, полученные в рамках кластерной модели ДЯС (7). Оценки, полученные с помощью выражения (12), даны штриховыми линиями

Величины переходных моментов для переходов из основного состояния в состояния полосы переменной четности приведены в таблице.

### ЗАКЛЮЧЕНИЕ

В рамках кластерной модели ДЯС рассчитаны полосы переменной четности в изотопных цепочках трансфермиевых ядер с Z = 102-110. Предсказаны величины энергий нижайших возбуждений отрицательной четности  $E(1^-)$  и переходных дипольного  $D_0$ , квадрупольного  $Q_2$  и октупольного  $Q_3$  моментов. Показано, что наиболее мягки-

ми по отношению к зеркально-асимметричной деформации оказываются изотопы Ds. Получено выражение, позволяющее оценить эволюцию энергии нижайшего 1<sup>-</sup>-состояния с изменением массы ядра. Рассчитаны критические угловые моменты  $I_{\rm crit}$ , при которых происходит фазовый переход к стабильной зеркально-асимметричной деформации.

Работа выполнена при поддержке Министерства науки и высшего образования РФ (грант № 075-10-2020-117).

#### СПИСОК ЛИТЕРАТУРЫ

- Reiter P. et al. Ground-State Band and Deformation of the Z = 102 Isotope <sup>254</sup>No // Phys. Rev. Lett. 1999. V. 82. P. 509; Reiter P. et al. Entry Distribution, Fission Barrier, and Formation Mechanism of <sup>254</sup><sub>102</sub>No // Phys. Rev. Lett. 2000. V. 84. P. 3542.
- 2. Leino M. et al. In-Beam Study of <sup>254</sup>No // Eur. Phys. J. A. 1999. V.6, No. 1. P.63-69.
- Hessberger F. P. Experiments on the Synthesis of New Superheavy Elements // Acta Phys. Slovaca. 1999. V. 49, No. 1. P. 43; Hessberger F. P. et al. Decay Properties of Neutron-Deficient Nuclei in the Region Z = 86-92 // Eur. Phys. J. A. 2000. V. 8. P. 521-535; Hofmann S. et al. The New Isotope <sup>270</sup>110 and Its Decay Products <sup>266</sup>Hs and <sup>262</sup>Sg // Eur. Phys. J. A. 2001. V. 10. P. 5-10; Hessberger F. P. et al. Decay Properties of Neutron-Deficient Isotopes <sup>256,257</sup>Db, <sup>255</sup>Rf, <sup>252,253</sup>Lr // Ibid. V. 12. P. 57-67.
   Herzberg R.-D. et al. Spectroscopy of Transfermium Nuclei: <sup>252</sup><sub>102</sub>No // Phys. Rev. C. 2001.
- Herzberg R.-D. et al. Spectroscopy of Transfermium Nuclei: <sup>202</sup><sub>102</sub>No // Phys. Rev. C. 2001. V.65. P.014303.
- Butler P.A. et al. Conversion Electron Cascades in <sup>254</sup><sub>102</sub>No // Phys. Rev. Lett. 2002. V.89. P.202501.
- Leino M., Hessberger F.P. The Nuclear Structure of Heavy-Actinide and Transactinide Nuclei // Annu. Rev. Nucl. Part. Sci. 2004. V. 54, No. 175. P. 175-215.
- Humphreys R. D. et al. In-Beam Electron Spectroscopy of <sup>226</sup>U and <sup>254</sup>No // Phys. Rev. C. 2004. V. 69. P. 064324.
- Ackermann D. Beyond Darmstadtium Status and Perspectives of Superheavy Element Research // Eur. Phys. J. A. 2005. V. 25. P. 577-582.
- 9. *Greenlees P. T. et al.* In-Beam and Decay Spectroscopy of Transfermium Elements // Ibid. P. 599-604.
- 10. Eeckhaudt S. et al. In-Beam Gamma-Ray Spectroscopy of <sup>254</sup>No // Ibid. P. 605-607.
- Reiter P. et al. Structure of the Odd-A, Shell-Stabilized Nucleus <sup>253</sup><sub>102</sub>No // Phys. Rev. Lett. 2005. V. 95. P. 032501.
- Bastin J. E. et al. In-Beam Gamma-Ray and Conversion Electron Study of <sup>250</sup>Fm // Phys. Rev. C. 2006. V.73. P.024308.
- Hofmann S., Münzenberg G. The Discovery of the Heaviest Elements // Rev. Mod. Phys. 2000. V.72. P.733.
- Sobiczewski A., Muntian I., Patyk Z. Problem of "Deformed" Superheavy Nuclei // Phys. Rev. C. 2001. V. 63. P. 034306.
- Moller P. et al. Nuclear Ground-State Masses and Deformations // At. Data Nucl. Data Tables. 1995. V. 59. P. 185–381.
- Ahmad I., Butler P. A. Octupole Shapes in Nuclei // Annu. Rev. Nucl. Part. Sci. 1993. V. 43. P. 71–116.

Проявление зеркально-асимметричной деформации в структуре сверхтяжелых ядер 519

- Butler P. A., Nazarewicz W. Intrinsic Reflection Asymmetry in Atomic Nuclei // Rev. Mod. Phys. 1996. V. 68. P. 349.
- Shneidman T. M., Adamian G. G., Antonenko N. V., Jolos R. V., Scheid W. Cluster Interpretation of Parity Splitting in Alternating Parity Bands // Phys. Lett. B. 2002. V. 526, No. 3-4. P. 322-328.
- Shneidman T. M., Adamian G. G., Antonenko N. V., Jolos R. V., Scheid W. Cluster Interpretation of Properties of Alternating Parity Bands in Heavy Nuclei // Phys. Rev. C. 2003. V. 67. P. 014313.
- Adamian G. G., Antonenko N. V., Jolos R. V., Palchikov Yu. V., Scheid W. Cluster Effects in the Structure of the Ground State and Superdeformed Bands of <sup>60</sup>Zr // Phys. Rev. C. 2003. V. 67. P. 054303.
- 21. Adamian G.G. et al. Dinuclear System Phenomena in Nuclear Structure and Nuclear Reactions // Acta Phys. Polon. B. 2003. V. 34. P. 2147.
- 22. Adamian G. G., Antonenko N. V., Jolos R. V., Shneidman T. M. Cluster Interpretation of Parity Doublet Rotational Bands in Odd-Mass Nuclei // Phys. Rev. C. 2004. V. 70. P. 064318.
- 23. Adamian G. G., Antonenko N. V., Jolos R. V., Palchikov Yu. V., Scheid W., Shneidman T. M. Decay out of Superdeformed Bands in the Mass Region  $A \approx 190$  within a Cluster Approach // Phys. Rev. C. 2004. V. 69. P. 054310.
- Adamian G. G., Antonenko N. V., Jolos R. V. Mass Parameters for a Dinuclear System // Nucl. Phys. A. 1995. V. 584. P. 205–220.
- Shneidman T. M., Adamian G. G., Antonenko N. V., Ivanova S. P., Scheid W. Relationship between Dinuclear Systems and Nuclei in Highly Deformed States // Nucl. Phys. A. 2000. V.671. P. 119–135.
- 26. Wang M., Huang W.J., Kondev F.G., Audi G., Naimi S. The AME 2020 Atomic Mass Evaluation (II). Tables, Graphs and References // Chin. Phys. C. 2021. V.45. P.030003.
- 27. Adamian G. G. et al. Effective Nucleus-Nucleus Potential for Calculation of Potential Energy of a Dinuclear System // Intern. J. Mod. Phys. E. 1996. V.5. P. 191.
- Migdal A.B. Theory of Finite Fermi Systems and Applications to Atomic Nuclei. New York: Wiley, 1967. P. VII-319.
- 29. Shneidman T. M., Adamian G. G., Antonenko N. V., Jolos R. V. Possible Alternative Parity Bands in the Heaviest Nuclei // Phys. Rev. C. 2006. V.74. P.034316.
- 30. Shneidman T. M., Adamian G. G., Antonenko N. V., Jolos R. V. Cluster Approach to the Structure of Nuclei with  $Z \ge 96$  // Phys. At. Nucl. 2007. V. 70. P. 1452–1456.
- Gregor E. T. et al. Decay Properties of the 3<sup>-</sup><sub>1</sub> Level in <sup>96</sup>Mo // J. Phys. G. 2019. V.46. P.075101.
- 32. Belyaev S. T. Concerning the Calculation of the Nuclear Moment of Inertia // Nucl. Phys. 1961. V. 24, No. 2. P. 322-325.
- 33. Jolos R. V., von Brentano P. Angular Momentum Dependence of the Parity Splitting in Nuclei with Octupole Correlations // Phys. Rev. C. 1994. V. 49. P. R2301.
- Mardyban E. V., Shneidman T. M., Kolganova E. A., Jolos R. V., Zhou S.-G. Analytical Description of Shape Transition in Nuclear Alternating Parity Bands // Chin. Phys. C. 2018. V.42. P. 124104.

Получено 6 июня 2022 г.