ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ

СПЕКТРЫ МГНОВЕННЫХ НЕЙТРОНОВ ДЕЛЕНИЯ РЕАКЦИЙ ²⁴⁰Pu(n, F), ²³⁹Pu(n, F) И ²³⁸U(n, F)

В. М. Маслов¹

Объединенный институт энергетических и ядерных исследований, Минск

Спектры предделительных нейтронов являются индикатором распределения энергии реакции деления на кинетическую энергию осколков и энергию мгновенных нейтронов деления. На примере реакций ²⁴⁰Pu(n, F), ²³⁹Pu(n, F) и ²³⁸U(n, F) показано, как форма наблюдаемых спектров мгновенных нейтронов деления (СМНД) зависит от делимости (вероятности деления) составных и остаточных ядер. Установлена корреляция этого эффекта с вкладами эмиссионного деления (n, xnf) в наблюдаемое сечение деления и конкуренцией реакций $(n, n\gamma)$, $(n, xn)^{1,...,x}$. Эксклюзивные спектры $(n, xnf)^{1,...,x}$ нейтронов соответствуют согласованному описанию наблюдаемых сечений реакций деления ²⁴⁰Pu(n, F), ²³⁹Pu(n, F), а также спектров эмиссии нейтронов ²³⁹Pu(n, xn) для нейтронов с энергией до 14 МэВ. Исходные значения параметров модели для описания СМНД ²⁴⁰Pu(n, F) фиксированы при описании спектров мгновенных нейтронов спонтанного деления ²⁴⁰Pu(n, xn f). Предсказаны, с учетом влияния эксклюзивных спектров предделительных нейтронов ²⁴⁰Pu(n, xn f)^{1,...,x}, спектры мгновенных нейтронов деления, полная кинетическая энергия осколков и продуктов деления TKE, среднее число мгновенных нейтронов деления для ²⁴⁰Pu(n, F).

Pre-fission neutron spectra influence the partitioning of fission energy between excitation energy and total kinetic energy of fission fragments. For the reactions ²⁴⁰Pu(n, F), ²³⁹Pu(n, F), and ²³⁸U(n, F), we have shown that the shape of prompt fission neutron spectra (PFNS) depends on the fissility (fission probability) of composite and residual nuclides. The correlation of these peculiarities with emissive fission contributions (n, xnf) to the observed fission cross section and competition of the reactions $(n, n\gamma)$, $(n, xn)^{1,...,x}$ has been established. Exclusive neutron spectra $(n, xnf)^{1,...,x}$ are consistent with fission cross sections of ²⁴⁰Pu(n, F), ²³⁹Pu(n, F), ²³⁸Pu(n, F), ²³⁷Pu(n, F), and ²³⁶Pu(n, F), as well as neutron emissive spectra of ²³⁹Pu(n, xn) at 14 MeV. Initial model parameters for ²⁴⁰Pu(n, F) PFNS are fixed by description of PFNS of ²⁴⁰Pu(sf). We predict the ²⁴⁰Pu(n, xnf)^{1,...,x} pre-fission neutron spectra, total kinetic energy of fission fragments, average prompt fission neutron number and observed PFNS of ²⁴⁰Pu(n, F).

PACS: 25.85.-w; 87.19.11

введение

Для спектров мгновенных нейтронов деления (СМНД) нейтронами ядер-мишеней 235,238 U и 239 Pu до недавнего времени дифференциальные измерения были выполнены лишь в ограниченных интервалах энергий налетающих нейтронов E_n и в узких диапазонах энергий мгновенных нейтронов деления ε . Во всех доступных данных

¹E-mail: mvm2386@yandex.ru

измерений СМНД наблюдались значительные вариации средних энергий СМНД $\langle E \rangle$ (см. [1–3] и соответствующие ссылки там). Средние энергии являются лишь интегральной характеристикой СМНД, однако было замечено, что относительная амплитуда вариаций $\langle E \rangle$ для ²³⁹Pu(n, F) существенно ниже, чем в реакциях ²³⁸U(n, F) или ²³⁵U(n, F). Это яркое проявление реакций эмиссионного деления (n, xnf) в наблюдаемых характеристиках реакции деления, в которых, кроме мгновенных нейтронов из осколков, возможен вылет предделительных нейтронов.

Предделительными считаются x нейтронов, которые испускаются из композитного (A+1) ядра при условии, что энергии возбуждения достаточно для деления любого из (A+1-x) ядер. Испарительные предделительные нейтроны испускаются сферическисимметрично относительно пучка налетающих нейтронов. Возможная угловая анизотропия мгновенных нейтронов деления связана с предравновесным/полупрямым механизмом эмиссии первого нейтрона в реакции (n, nX). В этом случае направление вылета первого нейтрона реакции (n, nX), равно как и парциальных составляющих: эксклюзивных нейтронов реакций $(n, n\gamma)$, $(n, 2n)^1$, $(n, 3n)^1$ и интересующих нас (n, nf), $(n, 2nf)^{1,2}$ и $(n, 3nf)^{1,2,3}$ нейтронов, — коррелирует с импульсом налетающих нейтронов.

Направление эмиссии мгновенных нейтронов деления из осколков деления коррелирует, главным образом, с направлением разлета осколков, т.е. осью деления. Однако основным фактором, влияющим на наблюдаемые характеристики мгновенных нейтронов деления, является уменьшение энергии возбуждения при последовательной эмиссии предделительных нейтронов.

1. СПЕКТРЫ МГНОВЕННЫХ НЕЙТРОНОВ ДЕЛЕНИЯ

Предделительные нейтроны существенно влияют на наблюдаемые спектры мгновенных нейтронов деления $S(\varepsilon, E_n)$, полную кинетическую энергию ТКЕ осколков $E_F^{\rm pre}$ и продуктов деления $E_F^{\rm post}$, среднее число мгновенных нейтронов деления $\nu_p(E_n)$, массовые распределения осколков деления и другие наблюдаемые характеристики процесса деления. Впервые предделительные нейтроны были зарегистрированы в реакциях ²³⁵U(n, F) и ²³⁸U(n, F) при $E_n \sim 14,3$ МэВ [4], мгновенные нейтроны деления регистрировались в диапазоне $\varepsilon \sim 0,4-5,0$ МэВ, однако избыток мягких нейтронов в $S(\varepsilon, E_n)$ при $\varepsilon \sim 0,4-2,0$ МэВ был замечен и воспроизведен в [4] с помощью суперпозиции распределений Вайскопфа [5] и Уатта [6]:

$$S(\varepsilon, E_n) = (1 - \beta)\varepsilon \exp\left(-\frac{\varepsilon}{T}\right) + \beta \exp\left(-\frac{\varepsilon}{T_f}\right) \frac{\operatorname{sh}\left(2\sqrt{\omega\varepsilon}\right)}{T_f},\tag{1}$$

где $\beta = 0,79$ — эффективный вклад нейтронов из осколков, $\omega = 0,5$ МэВ, эффективная температура остаточного ядра T = 0,40 МэВ, температура осколков $T_f = 1,16$ МэВ. Несмотря на чрезмерную упрощенность такой параметризации и узость исследованного диапазона энергий, данные [4] использовались для оценки СМНД вплоть до появления измерений [7]. Предсказание СМНД для реакции ²⁴⁰Pu(n, F), измеренных СМНД для которой нет, а измерения планируются [8], представляет очевидный интерес.

1.1. Модель для расчета СМНД. Для энергий падающих нейтронов, превышающих порог эмиссионного деления E_{nnf} , наблюдаемый СМНД $S(\varepsilon, E_n)$ [9] есть суперпозиция парциальных спектров предделительных нейтронов реакций $(n, xnf) - d\sigma_{nxnf}^k/d\varepsilon$ (x = 0, 1, 2, 3; k = 1, ..., x) и постделительных спектров $S_{A+1-x}(\varepsilon, E_n)$ нейтронов, испаряющихся из осколков деления:

$$S(\varepsilon, E_n) = \tilde{S}_{A+1}(\varepsilon, E_n) + \tilde{S}_A(\varepsilon, E_n) + \tilde{S}_{A-1}(\varepsilon, E_n) + \tilde{S}_{A-2}(\varepsilon, E_n) =$$

$$= \nu_p^{-1}(E_n) \left(\nu_{p1}(E_n) \beta_1(E_n) S_{A+1}(\varepsilon, E_n) + \nu_{p2}(E_n - \langle E_{nnf} \rangle) \beta_2(E_n) S_A(\varepsilon, E_n) + \beta_2(E_n) \frac{d\sigma_{nnf}^1}{d\varepsilon} + \nu_{p3}(E_n - B_n^A - \langle E_{n2nf}^1 \rangle - \langle E_{n2nf}^2 \rangle) \beta_3(E_n) S_{A-1}(\varepsilon, E_n) +$$

$$+ \beta_3(E_n) \left[\frac{d\sigma_{n2nf}^1}{d\varepsilon} + \frac{d\sigma_{n2nf}^2}{d\varepsilon} \right] + \nu_{p4}(E_n - B_n^A - B_n^{A-1} - \langle E_{n3nf}^1 \rangle - \langle E_{n3nf}^2 \rangle - \langle E_{n3nf}^2 \rangle) \times$$

$$\times \beta_4(E_n) S_{A-2}(\varepsilon, E_n) + \beta_4(E_n) \left[\frac{d\sigma_{n3nf}^1}{d\varepsilon} + \frac{d\sigma_{n3nf}^2}{d\varepsilon} + \frac{d\sigma_{n3nf}^3}{d\varepsilon} \right] \right). \quad (2)$$

В уравнении (2) $\tilde{S}_{A+1-x}(\varepsilon, E_n)$ — вклад *x*-го шанса деления в наблюдаемый спектр нейтронов деления, $\langle E_{nxnf}^k \rangle$ — средняя энергия *k*-го нейтрона реакции (n, xnf) со спектром $d\sigma_{nxnf}^k/d\varepsilon$, где $k \leq x$, величина $S(\varepsilon, E_n)$ нормирована на единицу. Индекс x обозначает шанс деления (ядер ²⁴¹Pu, ²⁴⁰Pu, ²³⁹Pu и ²³⁸Pu) после эмиссии предделительных нейтронов, $\beta_x(E_n) = \sigma_{n,xnf}/\sigma_{n,F}$ — вклад *x*-го шанса деления в наблюдаемое сечение, $\nu_{px}(E_{nx})$ — среднее число мгновенных нейтронов деления, испускаемых из осколков деления ядер ²⁴¹Pu, ²⁴⁰Pu, ²³⁹Pu и ²³⁸Pu.

Спектры нейтронов, испаряющихся из осколков деления $S_{A+1-x}(\varepsilon, E_n)$, как предложено в [10], были представлены суммой двух распределений Уатта [6], соответствующих легкому и тяжелому осколкам:

$$S_x(\varepsilon, E_n) = 0.5 \sum_{j=1}^2 W_j(\varepsilon, E_n, T_{xj}(E_n), \alpha),$$
(3)

$$W_j(\varepsilon_n, E_n, T_{xj}(E_n), \alpha) = \frac{2}{\sqrt{\pi} T_{xj}^{3/2}} \sqrt{\varepsilon} \exp\left(-\frac{\varepsilon}{T_{xj}}\right) \exp\left(-\frac{E_{vij}}{T_{xj}}\right) \frac{\operatorname{sh}\left(\sqrt{b_{xj}\varepsilon}\right)}{\sqrt{b_{xj}\varepsilon}}, \quad (4)$$

$$b_{xj} = \frac{4E_{vxj}^0}{T_{xj}^2}, \quad T_{xj} = k_{xj}\sqrt{E_i^*} = k_{xj}\sqrt{E_r - E_{fx}^{\text{pre}} + U_x}.$$
(5)

Здесь T_{xj} — «температуры» легкого и тяжелого осколков (j = l, h) для x-го ядра при делении после предварительной эмиссии нейтронов. В формулах (3)–(5) энергия с. ц. м. на один нуклон равна $E_{vxj}^0 = (A_{hx}/A_{lx}A_x)\alpha E_{fx}^{\rm pre}$. Предположение, что легкий и тяжелый осколки испускают одинаковое число нейтронов, является упрощением, однако известно, что учет зависимости множественности от массы осколка слабо сказывается на спектрах МНД [11]. Отношение значений «температур» для легкого и тяжелого осколков r = 1,1215 является полуэмпирическим параметром, который не изменяется от ядра к ядру. Он определяется из условия описания СМНД для $^{235}U(n, F)$ и 239 Pu(n, F) для тепловых нейтронов [1]; k_{ij} — параметр плотности уровней. Параметр α — отношение кинетической энергии осколков ТКЕ в момент эмиссии нейтронов к значению ТКЕ после полного ускорения осколков, $\alpha = 0,860$ для ²⁴⁰Pu, ²³⁹Pu, ²³⁸Pu и ²³⁷Pu.

Средняя энергия СМНД $\langle E \rangle$ в л.с. определяется как $\langle E \rangle = \langle \varepsilon \rangle + E_v$, где $\langle \varepsilon \rangle$ средняя энергия МНД в с. ц. м., а E_v — параметр распределения Уатта, т.е. энергия СЦМ в л.с., рассчитанная на один нуклон или, другими словами, энергия нуклона, движущегося со скоростью с. ц. м. Обычно предполагается, что большинство мгновенных нейтронов деления испускается полностью ускоренными осколками, однако можно предположить, что часть нейтронов испускается вскоре после разрыва ядра до полного ускорения осколков [12]. Введение дополнительного параметра α_1 [9] обусловило описание наблюдаемых спектров МНД (при уменьшении E_n) для реакций ²³⁸U(n, F) и ²³²Th(n, F) [9]. Для описания спектров МНД для $E_n > E_{n2nf}$ было принято дополнительное уменьшение скорости СЦМ в момент эмиссии нейтронов [9]. Вклад в формирование наблюдаемых спектров мгновенных нейтронов вносят разнообразные пары осколков с различными значениями $E_{fx}^{\rm pre}$. Для компенсации приближений, состоящих в использовании пары «псевдоосколков», усредненной энергии реакции деления и ТКЕ мы и будем использовать свободный параметр α_1 , одинаковый для всех рассматриваемых ядер. Энергетическую зависимость спектров МНД 238 U(n, F) и 232 Th(n, F) [9] выше порога реакции (n, 2nf) удалось воспроизвести, уменьшив энергию СЦМ на один нуклон как $E_{vij} = \alpha_1 E_{vij}^0$. Учитывая, что основное влияние на процесс эмиссии нейтронов производит энергия возбуждения, мы сделали предположение: параметр $\alpha_1 = 1$ для $E_n < 6$ МэВ и $\alpha_1 = 0.8$ для $E_n > 12$ МэВ, он линейно изменяется между этими энергиями. Эта дополнительная коррекция средней энергии постделительных нейтронов устраняет разногласия расчетных и наблюдаемых спектров МНД [9].

В реакции ²³⁹Pu($n_{\rm th}, f$) определяющий вклад дают состояния $J^{\pi} = 0^+$, как и в реакции ²⁴⁰Pu(sf). Сравнение СМНД для реакций ²³⁹Pu($n_{\rm th}, f$) [13, 14] и ²⁴⁰Pu(sf) [15] на рис. 1 показывает, что СМНД делящегося ядра ²⁴⁰Pu слабо зависит от энергии возбуждения в области $\varepsilon < 0,2$ МэВ, а в области $\varepsilon > \langle E \rangle$ спектр ²³⁹Pu($n_{\rm th}, f$) гораздо жестче. Определяющими параметрами для СМНД ²⁴⁰Pu($n_{\rm th}, f$) являются α и $E_F^{\rm pre}$. Различием энергий связи B_n и ТКЕ можно объяснить меньшие значения $\langle E \rangle$ для ²⁴⁰Pu($n_{\rm th}, f$) по сравнению с реакцией ²³⁹Pu($n_{\rm th}, f$). Оценка JENDL-4.0 СМНД [16], равно как и оценка ENDF/B-VIII.0 [17], не воспроизводит соответствующие экспериментальные данные даже для довольно подробно исследованной реакции ²³⁹Pu($n_{\rm th}, f$). Зафиксировав СМНД для ²⁴⁰Pu($n_{\rm th}, f$) таким образом, можно переходить к области энергий $E_n > E_{nnf}$.

Значения ТКЕ $E_F^{\rm pre}$, кинетических энергий до эмиссии мгновенных нейтронов из осколков, моделировались как суперпозиция ТКЕ для ядер, дающих вклад в наблюдаемое сечение деления:

$$E_F^{\rm pre}(E_n) = \sum_{x=0} E_{fx}^{\rm pre}(E_{nx}) \frac{\sigma_{n,xnf}}{\sigma_{n,F}}.$$
(6)

Энергия возбуждения ядер $A, \ldots, A + 1 - x$ после эмиссии предделительных (n, xnf) нейтронов определяется с помощью средних энергий $\langle E_{nxnf}^k \rangle$:

$$E_{nx} = E_r - E_{fx}^{\text{pre}} + E_n + B_n - \sum_{x=0, \ 1 \le k \le x} \left(\langle E_{nxnf}^k \rangle + B_{nx} \right).$$
(7)

Рис. 1. Спектры мгновенных нейтронов деления как отношение к максвелловскому спектру со средней энергией 2,0564 МэВ: сплошная линия — 240 Pu $(n_{\rm th}, f)$; штриховая — 241 Pu(sf); штрихпунктирная 239 Pu $(n_{\rm th}, f)$; штрихпунктирная с двумя точками — 240 Pu(sf); темные кружки — 240 Pu(sf) [15]

Кинетическая энергия продуктов деления $E_F^{\rm post}$, т.е. осколков деления после эмиссии мгновенных нейтронов из них, определялась как

$$E_F^{\text{post}} \approx E_F^{\text{pre}} \left(1 - \frac{\nu_{\text{post}}}{A + 1 - \nu_{\text{pre}}} \right).$$
(8)

Подобная зависимость E_F^{post} от E_n использовалась в [18] для энергий $E_n < E_{nnf}$, т. е. до порога эмиссии предделительных нейтронов E_{nnf} . При $E_n = 20$ МэВ вклад предделительных нейтронов ν_{pre} может достигать $\sim 0,15\nu_p$. Наиболее сильно проявляются предделительные нейтроны в $\nu_p(E_n)$ -реакции ²³²Th(n, F) [9].

Локальные максимумы в кинетической энергии осколков деления ТКЕ при $E_n > E_{nnf}$, до и после эмиссии мгновенных нейтронов деления, впервые наблюдались в реакции ²³⁸U(n, F) в [19] и впоследствии в [20] вблизи порогов реакций ²³⁸U(n, nf) и ²³⁸U(n, 2nf). Вариации ТКЕ вблизи порогов ²³⁸U(n, xnf) связаны с уменьшением энергии возбуждения делящихся ядер после эмиссии предделительных нейтронов [21]. Вклад реакции (n, nf) в $\sigma_{n,F}$ ²⁴⁰Pu(n, F) много меньше, чем для реакции ²³⁸U(n, F), поэтому этот эффект, как будет показано ниже, проявляется в ТКЕ для ²⁴⁰Pu(n, F) слабее. Воспроизвести наблюдаемую величину $E_F^{\rm pre}$ можно в предположении линейной зависимости $E_{f0}^{\rm pre}(E_n)$, т.е. ТКЕ для деления «первого» шанса.

Наблюдаемое среднее число мгновенных нейтронов $u_p(E_n)$ определяется как

$$\nu_p(E_n) = \nu_{\text{post}} + \nu_{\text{pre}} = \sum_{x=1}^{\infty} \nu_{px}(E_{nx}) + \sum_{x=1}^{\infty} (x-1)\beta_x(E_n).$$
(9)

Несмотря на чрезмерную упрощенность параметризации (1) и узкий исследованный диапазон энергий, данные [4] использовались при оценке СМНД, вплоть до появления измерений [7]. Например, для реакции ²³⁸U(n, F) [4] средняя энергия для испарительного спектра нейтронов в уравнении (1) $\langle E_{nxnf} \rangle = 2T$ вполне согласуется со средней энергией первого и второго нейтронов $d\sigma_{n2nf}^1/d\varepsilon$ и $d\sigma_{n2nf}^2/d\varepsilon$ из [9,14,23]: $\langle E_{n2nf} \rangle = 0.5(\langle E_{n2nf}^1 \rangle + \langle E_{n2nf}^2 \rangle) \sim 0.9$ МэВ. Спектр первого нейтрона реакции ²³⁸U(n, 2nf)¹ $d\sigma_{n2nf}^1/d\varepsilon$ при $E_n \sim 14$ МэВ содержит слабую предравновесную компоненту. В спектре нейтронов реакции ²³⁸U(n, nf) вклад этой компоненты таков, что средняя энергия нейтронов реакции (n, nf)¹ $\langle E_{nnf} \rangle \sim 2.5$ МэВ. Как следствие, спектр предделительных нейтронов в [9, 14, 23] существенно отличается от испарительной аппроксимации [4]. Аппроксимация СМНД с помощью соотношения (1) позволяет лишь качественно воспроизвести вклад в СМНД «мягких» предделительных нейтронов с энергией $\varepsilon < 1$ МэВ, испущенных из осколков деления ²³⁸U(n, f), ²³⁸U(n, nf) и ²³⁸U(n, 2nf), а также энергетическую зависимость спектра нейтронов, испущенных из осколков, в диапазоне 5 $< \varepsilon < 20$ МэВ.

1.2. Спектры предделительных $(n, xnf)^1$ нейтронов. Спектр первого нейтрона из реакции ²⁴⁰Pu $(n, nf)^1$ (здесь и в дальнейшем верхний индекс идентифицирует нейтрон в каскаде соответствующей реакции) можно определить как

$$\frac{d\sigma_{nnf}^1}{d\varepsilon} = \frac{d\sigma_{nnx}^1(\varepsilon)}{d\varepsilon} \frac{\Gamma_f^A(E_n - \varepsilon)}{\Gamma^A(E_n - \varepsilon)}.$$
(10)

На рис. 2 показаны $\beta_x(E_n) = \sigma_{n,xnf}/\sigma_{n,F}$ — отношение парциальных составляющих наблюдаемого сечения деления нейтронами ^{239,240} Pu(n, F) и ²³⁸U(n, F). Конкуренция деления и эмиссии нейтронов из ядер Pu(U), образовавшихся после эмиссии первого нейтрона, а также эксклюзивные спектры нейтронов $(n,xnf)^{1,...,x}$ и

Рис. 2. Отношение парциальных составляющих (n, xnf) наблюдаемого сечения деления нейтронами (n, F): сплошные линии — ²⁴⁰ Pu(n, F); штриховые — ²³⁹ Pu(n, F); штрихпунктирные — ²³⁸ U(n, F)

Рис. 3. Средние энергии эксклюзивных спектров предделительных нейтронов реакции 240 Pu(n, xnf) и средняя энергия нейтронов деления $\langle E \rangle$

 $(n, xn)^{1,...,x}$ моделируются в формализме Хаузера-Фешбаха. Вклады реакций (n, nf), $(n, 2nf) \dots (n, xnf)$ определяются при согласованном описании наблюдаемого сечения деления ²⁴⁰Pu(n, F), сечений деления ²³⁹Pu(n, F), ²³⁸Pu(n, F) и ²³⁷Pu(n, F), а также сечения реакции ²³⁹Pu(n, 2n) [24, 25]. Средние энергии $\langle E^k_{nxnf} \rangle$ эксклюзивных спектров нейтронов ²⁴⁰Pu $(n, xnf)^{1,...,x}$ представлены на рис. 3. Как видно, спектры нейтронов реакций (n, nf), $(n, 2nf)^1$ довольно жесткие, а спектры нейтронов $(n, 2nf)^2$ и $(n, 3nf)^{1,2,3}$ близки к испарительным.

Форма наблюдаемого СМНД при $E_n \sim 6-7$ МэВ сильно коррелирует с делимостью ядер, образующихся в реакциях (n, xnf), и сечениями конкурирующих реакций $(n, xn\gamma)$. Эксклюзивные спектры нейтронов реакции (n, nf) и спектры нейтронов реакций $(n, n\gamma)$, $(n, 2n)^{1, 2}$ позволяют детально определить, как относительные амплитуды нейтронных спектров реакций (n, nf) варьируются в зависимости от делимости ядер A + 1 и A с ростом энергии нейтронов E_n . На рис. 4 и 5 показаны СМНД вблизи порога реакций 240 Pu(n, nf) и 238 U(n, nf) [26–28]. Вариации формы СМНД с ростом E_n для 240 Pu(n, nf) и 238 U(n, nf) [9,23] похожи, однако влияние различий $\beta_x(E_n)$, а также различий порогов реакций (n, nf) и (n, 2n) проявляется очень ярко. В нижней части рис. 4 и 5 показаны спектры предделительных нейтронов. Очевидно, предделительные нейтроны формируют наблюдаемый спектр мгновенных нейтронов нов деления как в диапазоне $\varepsilon < \langle E \rangle$, так и в диапазоне $\varepsilon > \langle E \rangle$. Вклад их для $P_n < E_n < E_{n2n}$.

Когда реакция (n, nf) конкурирует только с реакцией $(n, n\gamma)$ (для ²⁴⁰Pu $E_{n2n} \sim 6,25$ МэВ), формы спектров предделительных нейтронов слабо зависят от делимостей ядер A и A + 1. Когда открывается канал реакции (n, 2n), форма спектров (n, nf)

Рис. 4. Спектры мгновенных нейтронов деления при $E_n = 5,5-7,0$ МэВ реакций ²⁴⁰ Рu(n, F) как отношение к максвелловскому спектру со средней энергией 2,024 МэВ: $\bigcirc -2^{38}$ U(n, F), $E_n = 7$ МэВ [26]; $\bullet -2^{38}$ U(n, F), $E_n = 7$ МэВ [27]. В нижней части рисунка показаны спектры предделительных нейтронов

Рис. 5. Спектры мгновенных нейтронов деления при $E_n = 6,0-7,0$ МэВ реакций ²³⁸U(n,F) как отношение к максвелловскому спектру со средней энергией 2,024 МэВ: $\bigcirc - {}^{238}$ U(n,F), $E_n = 7$ МэВ [26]; $\bullet - {}^{238}$ U(n,F), $E_n = 7$ МэВ [27]. В нижней части рисунка показаны спектры предделительных нейтронов

Рис. 6. Парциальные составляющие спектра мгновенных нейтронов деления для $E_n = 7$ МэВ реакций ²³⁸U(n, F) и ²⁴⁰Pu(n, F) как отношение к максвелловскому спектру со средней энергией 2,046 МэВ: $\Delta - {}^{238}$ U(n, F), $E_n = 7$ МэВ [26]; $O - {}^{238}$ U(n, F), $E_n = 7$ МэВ [27]; $\diamond - {}^{238}$ U(n, F), $E_n = 7$ МэВ [28]. В нижней части рисунка показаны расчетные парциальные вклады 240 Pu(n, f) и 240 Pu(n, nf) (сплошные линии); 238 U(n, f) и 238 U(n, nf) (штриховые линии); квазиэкспериментальные данные 238 U(n, F), $E_n = 7$ МэВ [27] (светлые кружки); спектры предделительных нейтронов 240 Pu(n, nf)¹ (штрихпунктирные линии); 239 Pu(n, nf)¹ (штрихпунктирные линии); 239 Pu(n, nf)¹

нейтронов оказывается весьма чувствительной к эксклюзивным спектрам нейтронов реакций $(n,2n)^1$ и $(n,2n)^2$. В частности, для $E_n \sim 7$ МэВ вблизи максимума спектра нейтронов деления $\varepsilon \sim 0.8$ МэВ, $\tilde{S}_{240}(\varepsilon, E_n) \sim 0.45 \tilde{S}_{241}(\varepsilon, E_n)$, а для 238 U(n, F) $ilde{S}_{238}(arepsilon,E_n)\sim 1, 2 ilde{S}_{239}(arepsilon,E_n)$ (рис. 6). Осколки деления ядер 241 Ри более «нагреты», по сравнению с осколками деления ядер ²³⁹U. На рис.6 показаны спектры предделительных нейтронов $\beta_2(E_n)\nu_p^{-1}(E_n) d\sigma_{nnf}^1/d\varepsilon$ для ²⁴⁰Pu(n, nf) и ²³⁸U(n, nf). Все компоненты СМНД на рис. 6 представлены в виде отношения к максвелловскому спектру с температурой порядка $2/3\langle E\rangle$. На рис. 6, который является аналогом рис. 2 из [29], показаны парциальные вклады реакций 238 U(n, f) и 238 U(n, nf) в СМНД при $E_n \sim 7$ МэВ. Вычитанием из наблюдаемого СМНД для нейтронов с $E_n \sim 7$ МэВ расчетного СМНД реакции (n, f) можно получить полуэкспериментальную оценку вклада реакции (n, nf) в СМНД, представленную символами в нижней части рисунка. Влияние предделительных нейтронов реакции 240 Pu $(n, nf)^1$ на $\langle E \rangle$ СМНД реакции 240 Pu(n, F) таково, что относительная амплитуда спектра предделительных нейтронов $\beta_2(E_n)\nu_p^{-1}(E_n) d\sigma_{nnf}^1/d\varepsilon$ при $E_n \sim 7$ МэВ примерно вдвое ниже, чем для СМНД реакции 238 U(n, F). Максимальная относительная амплитуда наблюдается для $E_n \sim 6.25$ МэВ в случае обеих реакций (см. рис. 4, 5).

Рис. 7. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 8$ МэВ реакций ²³⁸U(n, F) и ²⁴⁰Pu(n, F) как отношение к максвелловскому спектру со средней энергией 2,046 МэВ: темные кружки — ²³⁸U(n, F), $E_n = 8$ МэВ [26]. В нижней части рисунка показаны расчетные парциальные вклады ²⁴⁰Pu(n, f) и ²⁴⁰Pu(n, nf) (сплошные линии); ²³⁹U(n, f) и ²³⁹U(n, nf) (штриховые линии); а также спектры предделительных нейтронов ²⁴⁰Pu(n, nf)¹ (штрихпунктирные линии); ²³⁹Pu(n, nf)¹ (штрихпунктирные линии с двумя точками)

С ростом E_n вклады $\tilde{S}_A(\varepsilon, E_n)$ и $\tilde{S}_{A+1}(\varepsilon, E_n)$ изменяются, с ростом средней энергии предделительных нейтронов вклад компоненты $\tilde{S}_A(\varepsilon, E_n)$, обусловленный нейтронами из осколков деления, уменьшается быстрее, чем вклад компоненты $\tilde{S}_{A+1}(\varepsilon, E_n)$. В сравнении с вкладами $\tilde{S}_{239}(\varepsilon, E_n)$ для реакции 239 U(n, F) и $\tilde{S}_{241}(\varepsilon, E_n)$ для реакции 240 Pu(n, F) при $E_n \sim 8$ МэВ осколки деления ядер 241 Pu более «нагреты» (см. рис. 6, 7). Сравнение вкладов деления второго шанса $\tilde{S}_{240}(\varepsilon, E_n)$ для реакции 239 Pu(n, F) и $\tilde{S}_{241}(\varepsilon, E_n)$ для реакции 240 Pu(n, F) при $E_n \sim 9$ МэВ показывает, что осколки деления ядер 241 Pu менее «нагреты» (рис. 8) по сравнению с осколками деления ядер 240 Pu, делящихся в реакции 239 Pu(n, f). Это связано с тем, что относительный вклад реакции 240 Pu(n, nf) в СМНД намного выше, чем в случае 239 Pu(n, nf).

Спектр первого нейтрона содержит предравновесную/полупрямую компоненту, жесткая часть эксклюзивного спектра нейтронов из реакции $(n, nf)^1$ определяется вероятностью деления ядра A. При взаимодействии нейтронов с ядром-мишенью ²³⁸U эмиссионные спектры нейтронов проявляют сильную угловую анизотропию при энергии возбуждения U = 1-6 МэВ ядер ²³⁸U [2, 30, 31]. Учет прямого возбуждения коллективных уровней полосы основного состояния $J^{\pi} = 0^+, 2^+, 4^+, 6^+, 8^+$ в модели жесткого ротатора, прямого возбуждения уровней γ ротационных полос $K^{\pi} = 0^+, 2^+,$ уровней октупольной полосы $K^{\pi} = 0^-$ с помощью модели мягкого деформируемого ротатора [32] позволяет аппроксимировать угловую зависимость эмиссии первого ней-

Рис. 8. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 9$ МэВ реакций ²⁴⁰Pu(n, F) и ²³⁹Pu(n, F) как отношение к максвелловскому спектру со средней энергией 2,136 МэВ; сплошные линии — ²⁴⁰Pu(n, xnf); штриховые линии — ²³⁹Pu(n, xnf); \bigcirc — [35]; \bullet — [36]; \blacktriangle — [36] ²³⁹Pu(n, F); в нижней части рисунка показаны расчетные парциальные вклады ²⁴⁰Pu(n, f), ²⁴⁰Pu(n, nf) (сплошные линии); ²³⁹Pu(n, f), ²³⁹Pu(n, nf) (штриховые линии), квазиэкспериментальные данные: \bigcirc — [35]; \bullet — [36]; \blacktriangle — [36] ²³⁹Pu(n, f), (штриховые линии), квазиэкспериментальные данные: \bigcirc — [35]; \bullet — [36]; \bigstar — [36] ²³⁹Pu(n, f), (штриховые линии), квазиэкспериментальные данные: \bigcirc — [35]; \bullet — [36]; \bigstar — [36] ²³⁹Pu(n, f), (штриховые линии), квазиэкспериментальные данные: \bigcirc — [35]; \bullet — [36]; \bigstar — [36] ²³⁹Pu(n, f), $E_n = 9$ МэВ. Показаны спектры предделительных нейтронов ²⁴⁰Pu(n, nf)¹, ²³⁹Pu(n, nf)¹

трона как

$$\frac{d\sigma_{nnx}^1}{d\varepsilon} \approx \frac{d\tilde{\sigma}_{nnx}^1}{d\varepsilon} + \sqrt{\frac{\varepsilon}{E_n}} \frac{\langle \omega(\theta) \rangle_{\theta}}{E_n - \varepsilon},\tag{11}$$

где $d\tilde{\sigma}_{nnx}^{1}/d\varepsilon$ соответствует компаундной, не зависящей от угла эмиссии предравновесной компоненте. В таком подходе удается воспроизвести эмиссионные нейтронные спектры для взаимодействия ²³⁸U + n [2]. Методами QRPA пока не удается приемлемо описать эмиссионные нейтронные спектры для ²³⁸U + n или ²³⁹Pu + n [33]. Аппроксимацию спектра первого нейтрона (11) мы используем и для взаимодействия ²⁴⁰Pu + n. Анизотропная часть спектра первого нейтрона, соответствующая возбуждениям, сравнимым с барьером деления ядра ²⁴⁰Pu, будет существенно проявляться в эксклюзивных (n, xnf) спектрах, однако максимальным будет вклад в анизотропию эмиссионных спектров нейтронов реакции (n, n γ). Заметно проявится анизотропия и в эксклюзивных спектрах (n, nf)¹, (n, 2nf)¹ и (n, 2n)¹ для $E_n > 12$ МэВ и, как следствие, в наблюдаемых под разными углами СМНД [2, 34].

Спектр первого нейтрона для реакции (n, 2nx) или $(n, 2nx)^1$ определяется спектром первых нейтронов реакции $(n, nX)^1$ и вероятностью эмиссии нейтрона из ядра A как

$$\frac{d\sigma_{n2nx}^1}{d\varepsilon} = \frac{d\sigma_{nnx}^1(\varepsilon)}{d\varepsilon} \frac{\Gamma_n^A(E_n - \varepsilon)}{\Gamma^A(E_n - \varepsilon)}.$$
(12)

Спектр первого нейтрона для реакци
и $^{240}{\rm Pu}(n,2nf)$ или $^{240}{\rm Pu}(n,2nf)^1$ определяется как

$$\frac{d\sigma_{n2nf}^1}{d\varepsilon} = \int_{0}^{E-B_n^A} \frac{d\sigma_{n2nx}^1(\varepsilon)}{d\varepsilon} \frac{\Gamma_f^{A-1}(E_n - B_n^A - \varepsilon - \varepsilon_1)}{\Gamma^{A-1}(E_n - B_n^A - \varepsilon - \varepsilon_1)} d\varepsilon_1.$$
(13)

Спектры вторых нейтронов в реакции (n, 2nx), $(n, 2nx)^2$, т.е. спектры эмиссии вторых нейтронов, испущенных из ядра с массовым числом A, рассчитывались как

$$\frac{d\sigma_{n2nx}^2}{d\varepsilon} = \int_{0}^{E-B_n^A-\varepsilon} \frac{d\sigma_{n2nx}^1(\varepsilon)}{d\varepsilon} \frac{\Gamma_n^A(E_n - B_n^A - \varepsilon - \varepsilon_1)}{\Gamma^A(E_n - B_n^A - \varepsilon - \varepsilon_1)} d\varepsilon_1.$$
(14)

Спектр второго нейтрона для реакции (n, 2nf) или $(n, 2nf)^2$ определяется как

$$\frac{d\sigma_{n2nf}^2}{d\varepsilon} = \int_{0}^{E_n - B_n^A} \frac{d\sigma_{n2nx}^2(\varepsilon)}{d\varepsilon} \frac{\Gamma_f^{A-1}(E_n - B_n^A - \varepsilon_1 - \varepsilon_2)}{\Gamma^{A-1}(E_n - B_n^A - \varepsilon_1 - \varepsilon_2)} d\varepsilon_1.$$
(15)

Жесткая часть спектра первого нейтрона $d\sigma_{n2nf}^1/d\varepsilon$ реакции ²⁴⁰Pu(n, 2nf) определяется вероятностью деления ядра ²⁴⁰Pu. Эксклюзивные спектры первого и вторых нейтронов реакции ²⁴⁰Pu(n, 2nf) определяются вероятностью деления ядра ²³⁹Pu.

На рис.9 показаны парциальные вклады $\tilde{S}_{A+1}(\varepsilon, E_n)$, $\tilde{S}_A(\varepsilon, E_n)\tilde{S}_{A-1}(\varepsilon, E_n)$ и $\tilde{S}_{A-2}(\varepsilon, E_n)$ в наблюдаемые спектры СМНД ²⁴⁰Ри(n, F) и ²³⁸U(n, F) для $E_n =$

Рис. 9. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 14,7$ МэВ для реакций ²⁴⁰Pu(n, F) и ²³⁸U(n, F) как отношение к максвелловскому спектру со средней энергией 2,046 МэВ; сплошные линии — ²⁴⁰Pu(n, xnf); штриховые линии — ²³⁸U (n, xnf); \bigcirc – [7]; \blacktriangle – [4], штрихпунктирные линии с двумя точками – [4]

Рис. 10. Парциальные составляющие спектра мгновенных нейтронов деления при $E_n = 14,7$ МэВ для реакций ²⁴⁰Рu(n, F) и ²³⁹Рu(n, F) как отношение к максвелловскому спектру со средней энергией 2,136 МэВ; сплошные линии — ²⁴⁰Рu(n, xnf); штриховые линии — ²³⁹Pu(n, xnf); \bigcirc — [36]; \bullet — [35]; штрихпунктирная кривая с двумя точками — ENDF/B-VIII.0 [17]

14,7 МэВ [7]. Вклады реакций (n, f) сравнимы, $\tilde{S}_{241}(\varepsilon, E_n) \sim \tilde{S}_{239}(\varepsilon, E_n)$. Вклады реакций (n, nf) также сравнимы по величине, $\tilde{S}_{240}(\varepsilon, E_n) \sim 1,3\tilde{S}_{238}(\varepsilon, E_n)$, но вклад реакций ²⁴⁰Pu(n, 2nf) вблизи максимального вклада $(n, 2nf)^{1,2}$ нейтронов втрое ниже, $\tilde{S}_{239}(\varepsilon, E_n) \sim 0,3\tilde{S}_{237}(\varepsilon, E_n)$. Спектры пределительных нейтронов $\beta_2(E_n)\nu_p^{-1} \times (E_n)(d\sigma_{nnf}^1/d\varepsilon)$, $\beta_3(E_n)\nu_p^{-1}[d\sigma_{n2nf}^1/d\varepsilon]$ и $\beta_3(E_n)\nu_p^{-1}[d\sigma_{n2nf}^2/d\varepsilon]$ для ²⁴⁰Pu(n, F) демонстрируют сложную зависимость от делимостей ядер, образующихся при последовательной эмиссии (n, xnf).

Новые измерения СМНД для ²³⁵U(n, f) и ²³⁹Pu(n, f) [34–37] выполнены для диапазона энергий нейтронов $\varepsilon \sim 0,01-10$ МэВ. Эти измерения детально подтвердили предсказания СМНД для ²³⁵U(n, f) [38] и ²³⁹Pu(n, f) [14, 23, 24]. На рис. 10 представлены парциальные вклады $\tilde{S}_{A+1}(\varepsilon, E_n)$, $\tilde{S}_A(\varepsilon, E_n)$, $\tilde{S}_{A-1}(\varepsilon, E_n)$ и $\tilde{S}_{A-2}(\varepsilon, E_n)$ в наблюдаемые спектры СМНД ²⁴⁰Pu(n, F) и ²³⁹Pu(n, F) [34–37] для $E_n = 14,7$ МэВ. Вклады реакций (n, f) $\tilde{S}_{241}(\varepsilon, E_n) \sim \tilde{S}_{240}(\varepsilon, E_n)$ в СМНД сравнимы. Относительный вклад реакции $(n, nf)^1$ в СМНД для ²⁴⁰Pu(n, F) вдвое выше, $\tilde{S}_{240}(\varepsilon, E_n) \sim 2\tilde{S}_{239}(\varepsilon, E_n)$ для $\varepsilon \sim 0,5$ МэВ. Вклад реакций ²⁴⁰Pu(n, 2nf) вблизи максимума вклада $(n, 2nf)^{1,2}$ нейтронов несколько ниже, чем для ²³⁹Pu(n, 2nf), $\tilde{S}_{239}(\varepsilon, E_n) \sim 0.9\tilde{S}_{238}(\varepsilon, E_n)$. Спектры предделительных нейтронов $\beta_2(E_n)\nu_p^{-1}(E_n)(d\sigma_{nnf}^1/d\varepsilon)$, $\beta_3(E_n)\nu_p^{-1}[d\sigma_{n2nf}^1/d\varepsilon]$ и $\beta_3(E_n)\nu_p^{-1}[d\sigma_{n2nf}^2/d\varepsilon]$ для ²⁴⁰Pu(n, xnf) демонстрируют сложную зависимость от делимостей ядер, образующихся при последовательной эмиссии (n, xnf). Наблюдаемый спектр для $E_n = 14,7$ МэВ для ²⁴⁰Pu(n, F) существенно отличается от СМНД для ²³⁹Pu(n, F), поскольку вклад нейтронов с энергией $E_n > E_{nnf}$ для peakции ²⁴⁰Pu(n, F) подавлен.

2. СРЕДНИЕ ЭНЕРГИИ СПЕКТРОВ МНД и ТКЕ

Средние энергии спектров МНД служат удобной интегральной характеристикой. На рис. 11 видно, что наша зависимость $\langle E \rangle$ от E_n для 240 Pu(n,F) похожа на наблюдаемую для спектров МНД для реакции ²³⁹Pu(n, F) [35, 36]. Средние величины определялись в диапазоне энергий нейтронов $\varepsilon \sim 0.01 - 10.00$ МэВ. Наша оценка $\langle E \rangle$ от E_n для ²³⁹Pu(n, F) [1] наиболее детально воспроизводит совокупность экспериментальных данных [35, 36], особенно вблизи порогов реакций 239 Pu(n, nf) и 239 Рu(n, 2nf). Оценка [1] отличается от оценок [14, 24, 25] только в интервале энергий $E_n \sim 8-10$ МэВ. Теоретические оценки [16, 17] не воспроизводят экспериментальную зависимость $\langle E \rangle$ от E_n для ²³⁹Pu(n, F) [39]. Несмотря на то, что СМНД из JENDL-4.0 [16] и ENDF/B-VIII.0 [17] предсказывают вариацию $\langle E \rangle$ для ²⁴⁰Pu(n, F)выше порога E_{nnf} , корреляцию этих вариаций с (n, xnf) нейтронами можно считать условной, так как в этих работах корреляции формы СМНД с вкладами $\beta_x(E_n) =$ $\sigma_{n,xnf}/\sigma_{n,F}$ с испарительными (в [17]) спектрами нейтронов $(n,xnf)^{1,...,x}$ и ТКЕ искажены. Наша оценка $\langle E \rangle$ для 238 U(n,F) жестко коррелирует с формой СМНД. Влияние нейтронов 238 U $(n, 2nf)^{1,2}$ на $\langle E \rangle$ много сильнее, чем для реакции 240 Pu(n, F). Корреляция формы СМНД со средней энергией $\langle E \rangle$ в случае ²⁴⁰ Pu(n, F) такова, что $\langle E \rangle$ занимает промежуточное положение между $\langle E \rangle$ для 239 Pu(n,F) и 238 U(n,F).

Для ²³⁸U(n, F) зависимость $\langle E \rangle$ от E_n была получена в [9, 23], оценка настоящей работы отличается от нее только в интервале $8.5 < E_n < 11$ МэВ. Зависимость $\langle E \rangle$

Рис. 11. Средняя энергия спектра мгновенных нейтронов деления реакции ²³⁸U(*n*, *F*), ²⁴⁰Pu(*n*, *F*) и ²³⁹Pu(*n*, *F*): сплошная линия – ²⁴⁰Pu(*n*, *F*); штриховая линия – ²³⁸U(*n*, *xnf*); штрихпунктирная линия – ²³⁹Pu(*n*, *F*); штрихпунктирная линия с двумя точкками – ²⁴⁰Pu(*n*, *F*) JENDL-4.0 [16]; пунктирная линия – ²⁴⁰Pu(*n*, *F*) ENDF/B-VIII.0 [17]; \bigcirc – ²³⁹Pu(*n*, *F*) [35]; \diamondsuit – ²³⁹Pu(*n*, *F*) [36]; \blacklozenge – ²³⁸U(*n*, *F*) [8]; \blacktriangle – ²³⁹Pu(*n*, *F*) [45]; \square – ²⁴⁰Pu(*sf*) [15]

от E_n для $8.5 < E_n < 11$ МэВ основана на систематике для параметра $E_{vij} = \alpha_1 E_{vij}^0$ для СМНД ²³⁹Рu(n, F) и ²³⁵U(n, F) [1, 38–41].

Уменьшение $E_f^{\rm pre}$ с ростом энергии возбуждения делящегося ядра в реакции деления «первого» шанса, в данном случае ²⁴⁰Pu(n, f) [42, 43], при $E_n < E_{nnf}$, повидимому, сопровождается увеличением расстояния между осколками в точке разрыва [44]. Локальные максимумы в кинетической энергии осколков деления ТКЕ при $E_n > E_{nnf}$ до и после эмиссии мгновенных нейтронов деления вблизи порогов реакций ²⁴⁰Pu(n, nf) и ²⁴⁰Pu(n, 2nf) явно в данных [42] не наблюдаются. На рис. 12 видно, что наша оценка ТКЕ для ²⁴⁰Pu(n, F) жестко коррелирует с $\langle E \rangle$ СМНД. Учет вариаций ТКЕ вблизи порогов реакций (n, xnf), связанных с уменьшением энергии возбуждения делящихся ядер после эмиссии предделительных нейтронов, позволяет воспроизвести данные [42, 43]. Это обстоятельство может служить косвенным свидетельством в пользу реалистичной оценки формы СМНД вблизи порогов реакций (n, xnf), эксклюзивных спектров нейтронов (n, xnf)^{1,...,x} и вкладов реакций (n, xnf) в наблюдаемое сечение деления ²⁴⁰Pu(n, F).

Вклад реакции (n, nf) в $\sigma_{n,F}$ ²⁴⁰Pu(n, F) меньше, чем вклад (n, nf) в сечение реакции ²³⁸U(n, F), поэтому рост ТКЕ вблизи порога (n, nf) проявляется слабее. Воспроизвести наблюдаемые величины $E_F^{\rm pre}$ для ²⁴⁰Pu(n, F) можно в предположении линейной зависимости $E_{f0}^{\rm pre}(E_n)$, т.е. ТКЕ для деления «первого» шанса ²⁴⁰Pu(n, f). Уменьшение $E_f^{\rm pre}$ для реакции деления «первого» шанса ²⁴⁰Pu(n, f) при дальнейшем повышении энергии возбуждения $E_n > E_{nnf}$ можно связать с переходом от пре-

Рис. 12. Полная кинетическая энергия ТКЕ для реакций: сплошная линия $-E_F^{\rm pre}$, ²⁴⁰Pu(n, F); штриховая линия $-E_f^{\rm pre}$, ²³⁹Pu(n, f); штрихпунктирная линия -2^{39} Pu(n, F), $E_F^{\rm post}$; штрихпунктирная линия с двумя точками -2^{39} Pu(n, f), $E_f^{\rm post}$; $\bullet -2^{40}$ Pu(n, F), $E_F^{\rm pre}$ [42]; $\bigcirc -2^{40}$ Pu(n, F), $E_F^{\rm pre}$ [43]; $\lor -2^{40}$ Pu(n, F), $E_F^{\rm post}$ [42]; штрихпунктирная линия с двумя точками $-\langle E \rangle$, $\varepsilon \sim 0,01-10$ МэВ, 2^{40} Pu(n, F)

Рис. 13. Полная кинетическая энергия ТКЕ для реакций: сплошная линия $-E_F^{\rm pre}$, ²³⁸U(*n*, *F*); штриховая линия $-\frac{^{238}\text{U}(n, f)}{F}$; жирная сплошная линия $-\frac{^{238}\text{U}(n, F)}{F}$, $E_F^{\rm post}$; пунктирная линия $-\frac{^{238}\text{U}(n, f)}{F}$, $E_f^{\rm post}$; $\bullet -\frac{^{238}\text{U}(n, F)}{F}$, $E_F^{\rm pre}$ [19]; $\circ -\frac{^{238}\text{U}(n, F)}{F}$, $E_F^{\rm pre}$ [20]; $\checkmark -\frac{^{238}\text{U}(n, F)}{F}$, $E_F^{\rm post}$ [19]; $\bullet -\frac{^{238}\text{U}(n, F)}{F}$, $E_F^{\rm post}$ [20]; штрихпунктирная линия $-\langle E \rangle$, $\frac{^{238}\text{U}(n, F)}{F}$

имущественно асимметричного деления к смеси асимметричной и симметричной мод деления [19]. Относительные вклады симметричной и асимметричной мод зависят от энергии возбуждения и нуклонного состава делящихся ядер [46–48]. Быстрый рост вклада моды симметричного деления при $E_n > 10$ МэВ [42] приводит к уменьшению $E_f^{\rm pre}$ и $E_f^{\rm post}$ для ядер реакции деления первого и других шансов и проявляется как уменьшение наблюдаемых ТКЕ $E_F^{\rm pre}$ и $E_F^{\rm post}$ [19, 20, 39, 41]. Учет уменьшения массы делящегося ядра за счет эмиссии предделительных нейтронов $\nu_{\rm pre}$ в уравнении (8) существенно сказывается на энергетической зависимости $E_F^{\rm post}$ для энергий $E_n > E_{nnf}$. Впервые наблюдавшиеся в реакции ²³⁸U(n, F) в [19] локальные максимумы в кинетической энергии осколков деления TKE при $E_n > E_{nnf}$ до и после эмиссии мгновенных нейтронов деления представлены на рис. 13. Корреляция локальных вариаций в TKE и $\langle E \rangle$ проявляется более отчетливо, чем в случае реакции ²⁴⁰Pu(n, F). В рассматриваемом диапазоне энергий возбуждения ядер U и Pu для $E_n < 20$ МэВ вклад симметричной моды невелик, а разница величин $E_{\rm fasym}^{\rm pre}$ и $E_{\rm fsym}^{\rm pre}$ не превышает 10–15 МэВ.

ЗАКЛЮЧЕНИЕ

Таким образом, на основании адекватного описания наблюдаемых делительных характеристик для реакций деления ²³²Th(n, F), ²³⁵U(n, F), ²³⁸U(n, F) и ²³⁹Pu(n, F) предсказаны спектры мгновенных нейтронов деления ²⁴⁰Pu(n, F) для $E_n < 20$ МэВ. Показано, как форма наблюдаемых спектров мгновенных нейтронов деления (СМНД)

зависит от делимости составных и остаточных ядер $^{240-x}$ Pu. Эксклюзивные спектры 240 Pu $(n, xnf)^{1,...,x}$ нейтронов соответствуют согласованному описанию наблюдаемых сечений реакций деления 240 Pu(n, F), 239 Pu(n, F), 238 Pu(n, F), 237 Pu(n, F) и 236 Pu(n, F), а также эмиссионных спектров нейтронов 239 Pu(n, xn) для нейтронов с энергией ~ 14 МэВ. Исходные значения параметров модели для описания СМНД 240 Pu(n, F) фиксированы при описании спектров мгновенных нейтронов спонтанного деления 240 Pu(sf). Эксклюзивные спектры предделительных нейтронов 240 Pu $(n, xnf)^{1,...,x}$ существенно влияют на наблюдаемые спектры мгновенных нейтронов 240 Pu $(n, xnf)^{1,...,x}$ существенно влияют на наблюдаемые спектры мгновенных нейтронов 240 Pu(n, F). Установлена корреляция этого эффекта с вкладами эмиссионного деления (n, xnf) в наблюдаемое сечение деления и конкуренцией реакций $(n, n\gamma)$, $(n, xn)^{1,...,x}$.

СПИСОК ЛИТЕРАТУРЫ

- Maslov V. M. Prompt Fission Neutron Spectra of ²³⁵U and ²³⁹Pu // Сб. аннот. LXXII Междунар. конф. «Фундаментальные вопросы и приложения» (Ядро-2022), Москва, 11–16 июля 2022 г. С. 111; https://events.sinp.msu.ru/event/8/attachments/181/875 nucleus-2022-bookof-abstracts-www.pdf.
- 2. *Maslov V. M.* Anisotropy in Pre-Fission and $(n, n'\gamma)$ Neutron Spectra of ²³⁸U + n // Сб. аннот. LXXII Междунар. конф. «Фундаментальные вопросы и приложения» (Ядро-2022), Москва, 11–16 июля 2022 г. С. 168.
- 3. Maslov V. M. Pre-Fission $(n, 2nf)^{1,2}$ Neutrons in 235 U(n, f) and 239 Pu(n, f) // Там же. C. 169.
- Васильев Ю.А., Замятнин Ю.С., Ильин Ю.И., Сиротинин Е.И., Торопов П.В., Фомушкин Э.Ф. Измерения спектров и среднего числа нейтронов при делении ²³⁵ U и ²³⁸ U нейтронами с энергией 14,3 МэВ // ЖЭТФ. 1960. Т. 38. С. 671.
- 5. Weisscopf W.F. Statistics and Nuclear Reactions // Phys. Rev. 1937. V. 52. P. 295.
- Watt B. E. Energy Spectrum of Neutrons from Thermal Fission of ²³⁵U // Phys. Rev. 1952. V. 87. P. 1037.
- 7. Бойков Г. С., Дмитриев В. Д., Кудяев Г. А., Свирин М. И., Смиренкин Г. Н. Спектр нейтронов деления ²³²Th, ²³⁵U и ²³⁸U нейтронами с энергией 2,9 МэВ и 14,7 МэВ (ниже и выше порога эмиссионного деления) // ЯФ. 1991. Т. 53. С. 628.
- Devlin M., Bennett E. A., Buckner M. Q. et al. Experimental Prompt Fission Neutron Spectra for the ^{235, 238}U(n, f), ²³⁹Pu(n, f) and ^{240, 242}Pu(sf). https://indico.frib.msu.edu/event/52/ contributions/616/.
- Maslov V. M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kornilov N. V., Kagalenko A. B., Tetereva N. A. Prompt Fission Neutron Spectra of ²³⁸U(n, f) and ²³²Th(n, f) above Emissive Fission Threshold // Phys. Rev. C. 2004. V.69. P.034607.
- Корнилов Н. В., Кагаленко А. Б., Hambsch F.-J. Расчет спектров мгновенных нейтронов деления на основе новой систематики экспериментальных данных // ЯФ. 1999. Т.62. С. 209.
- 11. Fission Neutron Spectra of Uranium-235. NEA. NEA/WEC-9, OECD. 2003.
- 12. Hilscher D., Rossner H. Dissipation in Nuclear Fission // Ann. Phys. Fr. 1992. V. 17. P. 471.
- Старостов Б. И., Нефедов В. Н., Бойцов А. А. Спектры мгновенных нейтронов деления U-233, U-235, Pu-239 тепловыми нейтронами и спонтанного деления Cf-252 в интервале энергий 0,01–12 МэВ // Вопр. атомной науки и техники. Сер. «Ядерные константы». 1985. Вып. 3. С. 16.

- Maslov V. M., Pronyaev V. G., Tetereva N. A. et al. ²³⁵U(n, F), ²³³U(n, F) and ²³⁹Pu(n, F) Prompt Fission Neutron Spectra // J. Kor. Phys. Soc. 2011. V. 59. P. 1337.
- Gerasimenko B., Drapchinsky L., Kostochkin O. et al. Precision Measurements of Prompt Neutron Spectra in ²⁴⁰Pu and ²⁴²Pu Spontaneous Fission // J. Nucl. Sci. Technol. 2002. V. 2. P. 362.
- Shibata K., Iwamoto O., Nakagawa T. et al. JENDL-4.0: A New Library for Nuclear Science and Engineering // J. Nucl. Sci. Technol. 2011. V. 48. P. 1.
- 17. Brown D. A., Chadwick M. B., Capote R. et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-Project Cross Sections, New Standards and Thermal Scattering // Data Nucl. Data Sheets. 2018. V. 148. P. 1.
- Madland D. Total Prompt Energy Release in the Neutron-Induced Fission of ²³⁵U, ²³⁸U and ²³⁹Pu Neutron Spectra and Average Prompt Neutron Multiplicities // Nucl. Phys. A. 2006. V.772. P. 113.
- 19. Zoller C. Ph.D. Thesis. Techn. Hochschule. Darmstadt, 1995; http://www-win.gsi.de/charms/ data.htm.
- Duke D. L., Tovesson F., Laptev A.B. et al. Fission-Fragment Properties in ²³⁸U(n, f) between 1 and 30 MeV // Phys. Rev. C. 2016. V. 94. P. 054604.
- 21. *Maslov V.M.* Total Kinetic Energies in ²³²Th(*n*, *F*), ²³⁸U(*n*, *F*). http://isinn.jinr.ru/pastisinns/isinn-27/abstracts/.
- Khokhlov Yu. A., Ivanin I. A., In'kov V. I. et al. Measurements Results of Average Neutron Multiplicity from Neutron Induced Fission of Actinides in 0.5–10 MeV Energy Range // Proc. of the Intern. Conf. on Nucl. Data for Science and Technol., Gatlinburg, TN, USA, 1994. V. 1. P. 272.
- 23. Маслов В. М. Спектры мгновенных нейтронов деления ²³⁸U // ЯФ. 2008. Т. 71. С. 11.
- Маслов В. М. Спектры мгновенных нейтронов деления U и Pu выше порога эмиссионного деления // Вопр. атомной науки и техники. Сер. «Физика ядерных реакторов». 2006. Вып. 2. Р. 33; http://vniief.ru/wps/wcm/connect/vniief/site/publishing/publications/ nuclearreactor/y2006/y2-2006/vipusk2_2006.
- 25. Маслов В. М. Спектры мгновенных нейтронов деления ²³⁹Pu // АЭ. 2007. Т. 103. С. 119.
- 26. Корнилов Н.В. Спектры мгновенных нейтронов деления ²³⁸U // Вопр. атомной науки и техники. Сер. «Ядерные константы». 1985. Вып. 4. С. 46.
- Ловчикова Г. Н., Труфанов А. М., Свирин М. И. и др. Спектры и средние энергии в реакции деления ²³⁸U нейтронами с энергией < 20 МэВ // ЯФ. 2004. Т. 67. С. 1270.
- Frehaut J., Bertin A., Bois R. Measurement of the Fission Neutron Energy Spectra for the Fast Neutron Induced Fission of U-235 and U-238 // 3-я Всесоюз. конф. по нейтронной физике, Киев, СССР, 9–13 июня 1975 г. Т.5. С. 349–362.
- 29. *Maslov V. M.* Direct and Compound Interactions for the Neutron-Induced Fission Cross Section Determination // Eur. Phys. J. Web Conf. 2010. V. 8. P. 02002.
- Kammerdiener J. L. Neutron Spectra Emitted by ²³⁹Pu, ²³⁸U, ²³⁵U, Pb, Nb, Ni, Al and C Irradiated by 14 MeV Neutrons. UCRL-51232. 1972.
- Baba M., Wakabayashi H., Ito N. et al. Measurements of Prompt Fission Neutron Spectra and Double-Differential Neutron Inelastic-Scattering Cross Sections for ²³⁸U and ²³²Th // J. Nucl. Sci. Technol. 1990. V. 27. P. 601.
- Maslov V. M., Porodzinskij Yu. V., Tetereva N. A. et al. Excitation of Octupole, Beta- and Gamma-Vibration Band Levels of ²³⁸U by Inelastic Neutron Scattering // Nucl. Phys. A. 2006. V. 764. P. 212.
- Dupuis M., Hilaire S., Peru S. Microscopic Modeling of Direct Pre-Equilibrium Emission from Neutron Induced Reactions on Even and Odd Actinides // Eur. Phys. J. Web Conf. 2017. V. 146. P. 12002.

- 34. *Kelly K. J., Kawano T., O'Donnel J. M. et al.* Pre-Equilibrium Asymmetries in the ²³⁹Pu(*n*, *f*) Prompt Fission Neutron Spectrum // Phys. Rev. Lett. 2019. V. 122. P. 072503.
- Marini P., Taieb J., Laurent B. et al. Prompt-Fission-Neutron Spectra in the ²³⁹Pu(n, f) Reaction // Phys. Rev. C. 2020. V. 101. P.044614.
- Kelly K. J., Devlin M., O'Donnel J. M. et al. Measurement of the ²³⁹Pu(n, f) Prompt Fission Neutron Spectrum from 10 keV to 10 MeV Induced by Neutrons of Energy 1–20 MeV // Phys. Rev. C. 2020. V. 102. P. 034615.
- Kelly K. J., Gomez J. A., Devlin M. et al. Measurement of the ²³⁵U(n, f) Prompt Fission Neutron Spectrum from 10 keV to 10 MeV Induced by Neutrons of Energy from 1 MeV to 20 MeV // Phys. Rev. C. 2022. V. 105. P. 044615.
- Маслов В. М., Тетерева Н. А., Проняев В. Г. и др. Спектр мгновенных нейтронов деления ²³⁵U(n, f) // АЭ. 2010. Т. 108. С. 352.
- 39. *Maslov V. M.* Prompt Fission Neutron Spectra of ²³⁵U(*n*, *F*) and ²³⁹Pu(*n*, *F*). https://events. sinp.msu.ru/event/8/ contributions/586/attachments/568/881/mvmNucl2022%2B.pdf.
- Maslov V. M., Kornilov N. V., Kagalenko A. B., Tetereva N. A. Prompt Fission Neutron Spectra of ²³⁵U Up above Emissive Fission Threshold // Nucl. Phys. A. 2005. V. 760. P. 274; https://www-nds.iaea.org/minskact/ data/ 92235f18.txt.
- Maslov V. M., Porodzinskij Yu. V., Baba M., Hasegawa A., Kornilov N. V., Kagalenko A. B., Tetereva N.A. Prompt Fission Neutron Spectra of ²³⁸U(n, f) above Emissive Fission Threshold // Eur. Phys. J. A. 2003. V. 18. P. 93.
- Pica A., Chemey A. T., Loveland W. The Fast Neutron Induced-Fission of ²⁴⁰Pu and ²⁴²Pu // Phys. Rev. C. 2022. V. 106. P. 044603.
- Воробьева В. Г., Дьяченко Н. П., Кузьминов Б. Д. и др. Определение энергетической зависимости v для ²³⁸U, ²⁴⁰Pu и ²⁴²Pu с помощью анализа энергетического баланса // АЭ. 1974. Т. 36. С. 32.
- Shimada K., Ishizuka Ch., Ivanyuk F. A. et al. Dependence of Total Kinetic Energy of Fission Fragments on the Excitation Energy of Fissioning Systems // Phys. Rev. C. 2021. V. 104. P. 054609.
- 45. Воробьев А. С., Щербаков О.А. Интегральные спектры мгновенных нейтронов деления ²³⁵U и ²³⁹Pu тепловыми нейтронами // Вопр. атомной науки и техники. Сер. «Ядерные константы». 2016. Вып. 2. С. 52.
- Maslov V. M. Symmetric/Asymmetric p- and n-Induced Fission of Th, Pa, U and Np // 4th Intern. Workshop on Nucl. Fission and Fission-Product Spectroscopy. AIP, 2009. P. 87.
- 47. *Maslov V.M.* Symmetric vs Asymmetric Nucleon-Induced Fission of Thorium Up to 200 MeV // Phys. Lett. B. 2007. V. 649. P. 376.
- 48. *Maslov V. M.* Symmetric/Asymmetric *p* and *n*-Induced Fission of Th, Pa, U, Np, Pu and Am // J. Kor. Phys. Soc. 2011. V.59. P.863.

Получено 1 ноября 2022 г.