ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

К ВОПРОСУ ВЫБОРА МАГНИТНО-ОПТИЧЕСКОЙ СТРУКТУРЫ «НОВОГО НУКЛОТРОНА»

А.В.Бутенко, В.А.Михайлов, А.В.Тузиков, А.В.Филиппов¹, Г.Г.Ходжибагиян

Объединенный институт ядерных исследований, Дубна

Обсуждается выбор магнитно-оптической структуры нуклотрона в рамках концепции проекта «Новый нуклотрон».

The selection of the Nuclotron magnetic lattice within the concept of the "New Nuclotron" project is discussed.

PACS: 29.20.-c

введение

Сверхпроводящая магнитная система нуклотрона [1] насчитывает 96 дипольных магнитов длиной 1,44 м и 64 квадрупольных магнита длиной 0,425 м. Все магниты охлаждаются принудительным потоком кипящего гелия [2]. Нуклотрон находится в эксплуатации с 1993 г., его магнитная система испытала около 60 циклов охлаждения/отогрева от температуры окружающей среды до 4,6 К, несколько десятков миллионов циклов возбуждения током до 6 кА. Поэтому для надежной эксплуатации нуклотрона в составе реализуемого в ОИЯИ ускорительного комплекса NICA [3] требуется обновление его магнитной системы.

В настоящий момент магнитно-оптическая структура нуклотрона состоит из 8 октантов (суперпериодов), каждый длиной 31,44 м. Октант включает в себя три регулярных ФОДО-ячейки и одну ячейку, не содержащую дипольных магнитов, длины ячеек — 31,44/4 = 7,86 м, периметр нуклотрона — $8 \cdot 31,44 = 251,52$ м. В структуре нуклотрона перед каждой линзой размещается элемент системы коррекции (корректирующий магнит) или диагностики пучка (пикап-электрод), на рис. 1 обозначен П/МК. Всего таких мест в структуре — 64.

ТРЕБОВАНИЯ К МАГНИТНО-ОПТИЧЕСКОЙ СТРУКТУРЕ «НОВОГО НУКЛОТРОНА»

Безусловными требованиями, налагаемыми на магнитно-оптическую структуру «нового нуклотрона», очевидно являются: имеющиеся направления перевода пучка из бустера в нуклотрон и вывода пучка из нуклотрона в корпус № 205, проектное на-

¹E-mail: philippov@jinr.ru

Рис. 1 (цветной в электронной версии). Схема регулярной ФОДО-ячейки нуклотрона с дипольными магнитами (снизу) и ячейки, не содержащей дипольных магнитов (сверху)

правление вывода пучка из нуклотрона в коллайдер комплекса NICA — здание № 17, а также кольцевой тоннель в цокольном этаже корпуса № 1, в котором размещен нуклотрон. Отметим в качестве дополнительного условия следующее: максимально возможная энергия пучка ускоренных ядер в ускорителе достигается при магнитном поле в дипольном магните 1,8 Тл.

Сформулированные выше требования позволяют спланировать структуру «нового нуклотрона» с числом октантов, кратным 4 (см. далее), т.е. как и в структуре нуклотрона в настоящее время.

СТРУКТУРА МАГНИТНОЙ ОПТИКИ «НОВОГО НУКЛОТРОНА»

Предлагаемая новая структура магнитной оптики нуклотрона показана на рис.2. Она также планируется из 8 октантов, но каждый октант будет включать в себя три регулярных ДФО-ячейки с двумя секторными дипольными магнитами и одну ячейку без дипольных магнитов. Длина дипольного магнита в предлагаемой структуре выбрана равной 2,88 м, а длина квадрупольного магнита — 0,46 м. Таким образом, в новой структуре насчитывается 48 дипольных магнитов и 64 квадрупольных магнита.

Выбор структуры на основе ДФО-ячейки обоснован фактом большей устойчивости такой структуры к сезонным перемещениям фундамента корпуса № 1, в котором размещен нуклотрон (см. далее). На рис. 1 и 2 фокусирующая (Ф) линза показана синим цветом; дефокусирующая (Д) — красным; дипольный магнит (М) — зеленым. На рис. 1 корректор обозначен МК. В предлагаемой структуре мест для размещения таких элементов 32.

На рис. 3 и 4 показаны оптические функции в одном октанте магнитно-оптических структур на основе ФОДО и ДФО регулярных ячеек для рабочей точки 6,8/6,85.

Рис. 2 (цветной в электронной версии). Примерная схема регулярной ДФО-ячейки «нового нуклотрона» с дипольными магнитами (снизу) и ячейки, не содержащей дипольных магнитов (сверху)

Рис. 3. Оптические функции в существующей структуре нуклотрона на основе ФОДО-ячейки

компоновка и размещение оборудования

В существующей структуре (см. рис. 3) диагностическое оборудование располагается в местах с большим значением бета-функции по вертикали (около 12 м) и малым значением бета-функции по горизонтали (около 3 м), и большая часть диагностического оборудования расположена возле Д-линз [4]. Элементы системы коррекции также находятся рядом с линзами, но это оборудование не совмещено с диагностическим. В существующей структуре нуклотрона под размещение элемента системы диагностики или системы коррекции отведено пространство с эффективной длиной 0,3 м.

Рис. 4. Оптические функции в структуре «нового нуклотрона» на основе ДФО-ячейки

В новой структуре мест для размещения диагностического оборудования и элементов системы коррекции в два раза меньше, чем в существующей структуре нуклотрона. Предлагается, чтобы в новой структуре диагностическое оборудование располагалось между блоками Д- и Ф-линз. Из рис. 4 видно, что в этом месте происходит быстрое изменение бета-функций от 5 до 11 м. Поэтому такая схема является компромиссным вариантом, дающим возможность измерения орбиты как по вертикали, так и по горизонтали. Кроме того, предлагается совмещенное расположение элемента системы диагностики пучка (пикап-электрод) и элемента системы коррекции (корректирующего магнита) подобно тому, как это реализовано в бустере [5] и [6]. При этом эффективная длина пространства для такого совмещенного расположения равна 0,69 м. Набор обмоток системы коррекции в структуре «нового нуклотрона» предполагается схожим с набором обмоток системы коррекции бустера и коллайдера [5].

Эффективная длина прямолинейного промежутка в новой структуре равна 6,25 м. Для сравнения в существующей структуре нуклотрона эффективная длина свободного пространства в ячейке с пропущенными дипольными магнитами — 3,48 м, таких мест в этой ячейке два (см. рис. 1). Компоновка оборудования прямолинейных участков в структуре «нового нуклотрона» предлагается следующей (табл. 1).

В табл. 2 дано сравнение основных параметров нуклотрона, получаемых путем расчета с помощью модели нуклотрона, реализованной в MAD-X [7]:

— вторая колонка — на основе ФОДО регулярной ячейки, рассчитанной при проектных значениях магнитной жесткости (45 Тл · м), длинах дипольных магнитов (1,44 м) и квадрупольных линз (0,425 м) [8];

— третья колонка — на основе ФОДО регулярной ячейки, рассчитанной при магнитном поле в дипольных магнитах 1,8 Тл и длинах дипольных магнитов (1,4 м) и квадрупольных линз (0,44 м), найденных по результатам магнитных измерений [9];

— четвертая колонка — на основе ДФО регулярной ячейки, рассчитанной при магнитном поле в дипольных магнитах 1,8 Тл и длинах дипольных магнитов и квадрупольных линз 2,88 м и 0,46 м соответственно.

Таблица 1. Предварительный состав оборудования прямолинейных участков «нового нуклотрона»

N⁰	Состав оборудования
1	Система инжекции из линейного ускорителя легких ионов
2,8	Свободно, предназначено для оборудования поляризационной программы
3	ВЧ-станция, измерительный период, токовводы
4	Быстрый вывод в корп. № 17
5	Медленный вывод в корп. № 205
6	Система инжекции из бустера
7	Ионизационные и люминофорные профилометры пучка, датчики тока,
	система измерения бетатронных частот, станция внутренней мишени

Таблица 2. Сравнения основных параметров нуклотрона для структур ФОДО и ДФО

	Тип магнитной структуры			
Параметр	ФОДО,	ФОДО,	ДФО	
	проект	достигнуто		
Заряд иона	79	79	79	
Массовое число, а.е.м.	197	197	197	
Кинетическая энергия, ГэВ/нуклон	4,56	3,79	3,92	
Магнитная жесткость, Тл · м	45	38,5	39,6	
Магнитное поле в диполе, Тл	2,05	1,8	1,8	
Ток в диполе, А	5697	5013	4655	
Длина дипольного магнита, м	1,44	1,4	2,88	
Зазор в диполе, м	0,07	0,07	0,065	
Радиус поворота в дипольном магните, м	22	21,4	22	
Магнитное поле на полюсе линзы, Тл	1,6	1,34	1,6	
Радиус вписанной окружности, м	0,0475	0,0475	0,0475	
Длина квадрупольной линзы, м	0,425	0,44	0,46	
Градиент магнитного поля в Ф-линзе, Тл/м	33,68	30,23	41,34	
Градиент магнитного поля в Д-линзе, Тл/м	$-33,\!68$	-30,23	-41,76	
Периметр ускорителя, м	251,52	251,52	251,52	
Критическая энергия, ГэВ/нуклон	7,53	18,36	8,75	
Бетатронные частоты гор./верт.	6,8/6,85	7,4/7,24	6,8/6,85	
Натуральная хроматичность гор./верт.	-7,42/-7,56	-8,88/-9,01	-7,81/-8,12	
Максимум бета-функции гор./верт., м	12,5/12,5	12,5/12,5	11,7/11,4	
Максимум дисперсии гор./верт., м	2,7/0	4,1/0	3/0	

Видно совпадение полученных таким образом данных табл. 2 с данными, приведенными в работе [8].

РАСЧЕТ ОГИБАЮЩЕЙ ПУЧКА И ОЦЕНКА АКЦЕПТАНСА «НОВОГО НУКЛОТРОНА»

Расчет $env_{x/y}(s)$ — огибающей пучка был проведен по формуле

$$env_{x/y}(s) = \sqrt{A_{x/y}\beta_{x/y}(s)} + D_{x/y}(s)\Delta_{p,\text{ Makc}} + \Delta_{x/y,\text{ Makc}}\sqrt{\frac{\beta_{x/y}(s)}{\beta_{x/y,\text{ Makc}}}}.$$
 (1)

Здесь *s* — продольная координата; $A_{x/y}$ — акцептанс ускорителя, рассматривалось три варианта (рис. 5); $D_{x/y}(s)$ — дисперсии; $\Delta_{p.\text{ макс}} = 4 \cdot 10^{-3}$ — максимальный размер сепаратрисы [10]; $\beta_{x/y}(s)$ и $\beta_{x/y,\text{ макс}}$ — бета-функции и максимумы бета-функций; $\Delta_{x/y,\text{ макс}} = 5$ мм — максимальные отклонения скорректированной замкнутой орбиты пучка (3O).

Из рис. 5 можно отметить, что пучок в Д-линзе практически круглый, и его поперечный размер (гор./верт. полуоси сечения) около 37/35 мм для максимального акцептанса (зеленая кривая, 3). Это означает, что радиус вписанной окружности в Д-линзах может быть выбран около 38 мм, что приводит к тому, что магнитное поле на полюсе в линзе будет меньше 1,6 Тл (нет насыщения). По результатам моделирования динамики пучка предлагаются следующие апертуры вакуумной камеры в структурных элементах табл. 3.

Окончательный выбор апертуры вакуумной камеры будет определен по результатам моделирования магнитных полей диполей и квадруполей «нового нуклотрона» и их конструкторской проработкой.

Рис. 5 (цветной в электронной версии). Огибающие пучка при трех различных наборах акцептанса, синим (1) показана ожидаемая область пучка в отсутствие ошибок магнитной структуры и т. п., соответствующая полному эмиттансу 10/10π мм мрад (соответствует акцептансу легкоионного линейного ускорителя и/или акцептансу канала бустер-нуклотрон)

T ()	п				
Iannuna 3	Предварительные	anentvnu	BAKVVMHOU	KAMENLI B	«HOROM HVK TOTOOHA»
1 иолици 0.	предварительные	uncpryppi	banyymiton	numeph b	«noboli nymiorpone»

Элемент структуры	Полуоси сечения вакуумной камеры гор./верт., мм
Ф-линза	55/26
Д-линза	38/38
Дипольный магнит	55/35
Пикап-электрод и корректор	55/35

Рис. 6. Сравнение огибающих ЗО пучка

Оценка акцептанса — $A_{x/y}$ «нового нуклотрона» может быть вычислена по формуле

$$A_{x/y} = \min_{s \in [0,C]} \frac{\left(r_{x/y}(s) - |D_{x/y}(s)| \Delta_{p, \text{ Makc}} - \Delta_{x/y, \text{ Makc}} \sqrt{\frac{\beta_{x/y}(s)}{\beta_{x/y, \text{ Makc}}} \right)}{\beta_{x/y}(s)}.$$
(2)

Здесь $r_{x/y}(s)$ — полуоси сечения вакуумной камеры табл. 3; C — периметр нуклотрона. Расчет акцептанса по формуле (2) для апертур элементов табл. 3 дает следующую величину: 107/79 π мм·мрад. В сегодняшней структуре нуклотрона акцептанс оценивается величиной 48/29 π мм·мрад [8].

Сравнение огибающих ЗО пучка для двух типов структур (параметры из табл. 2, колонки 3 и 4) приведено на рис. 6, при среднеквадратичных значениях ошибок юстировки квадрупольных линз $\sigma_{\Delta x, 30}/\sigma_{\Delta y, 30} = 0.5/0.5$ мм. Приведенные огибающие ЗО пучка, полученные путем усреднения ЗО в многократных (1000 раз) статистических испытаниях. При меньших значениях ошибок юстировки огибающие ЗО пучка на рис. 6 будут уменьшаться линейно с уменьшением этих ошибок. При одних и тех же среднеквадратичных значениях ошибок юстировки квадрупольных линз можно видеть, что огибающие ЗО пучка для ДФО-структуры нуклотрона в два и более раз меньше огибающих ЗО пучка для ФОДО-структуры нуклотрона как по горизонтали, так и по вертикали. Поэтому можно ожидать, что структура на основе ДФО регулярной ячейки будет более устойчивой к сезонным перемещениям фундамента корпуса $\mathbb{N} \ 1$, в котором размещен нуклотрон.

ЗАКЛЮЧЕНИЕ

Рассмотрена магнитно-оптическая структура «нового нуклотрона» на основе ДФО-ячейки. Предложены: вариант компоновки оборудования в прямолинейных промежутках ускорителя; совмещенный вариант размещения элементов системы диагностики и системы коррекции; апертуры структурных элементов. Показано, что при одних и тех же ошибках юстировки квадрупольных линз огибающие ЗО пучка для нуклотрона на основе ДФО-ячейки в два и более раз меньше огибающих ЗО пучка для структуры нуклотрона на основе ФОДО. Дана оценка акцептанса для предлагаемой магнитно-оптической структуры «нового нуклотрона».

Отметим, что в предлагаемой структуре «нового нуклотрона» расстояния между элементами, возможно, неоптимальны. Поэтому в дальнейшем необходима адаптация предлагаемой структуры магнитной оптики с целью выбора необходимых расстояний между элементами магнитной структуры путем уменьшения магнитной дорожки, так как имеется возможность доускорения частиц в коллайдере [3]. Кроме того, необходимо проделать работу по выбору оптимальной рабочей точки, в том числе и для работы нуклотрона в рамках реализуемого ускорительного комплекса NICA в моде исследования спиновой физики.

СПИСОК ЛИТЕРАТУРЫ

- Khodzhibagiyan H. G., Smirnov A. A. The Concept of a Superconducting Magnet System for the Nuclotron // Proc. of the 12th Intern. Cryog. Eng. Conf. (ICIC12), Southampton, 1988. P. 841–844.
- Baldin A. M. et al. Cryogenic System of the Nuclotron A New Superconducting Synchrotron // Adv. Cryog. Eng. 1994. No. 39. P. 501–508.
- 3. *Кекелидзе В.А. и др.* Технический проект объекта «Комплекс NICA» / Под ред. В. Д. Кекелидзе, Ю. К. Потребеникова. Дубна: ОИЯИ, 2018. 90 с.
- 4. Схема оборудования нуклотрона. http://nucloweb.jinr.ru/nucloserv/inform/nuclotron.jpg.
- 5. Шандов М.М., Борисов В.В., Бутенко А.В. и др. // Письма в ЭЧАЯ. 2020. Т.17, № 4(229). С.555-560.
- 6. Андреев В., Волков В., Горбачев Е. и др. // Там же. С. 615-620.
- 7. Methodical Accelerator Design. http://madx.web.cern.ch/madx/.
- 8. Иссинский И.Б., Бровко О.И., Бутенко А.В. Сообщ. ОИЯИ Р9-2007-107. Дубна, 2007.
- 9. Паспорт нуклотрона. Дубна, 2018.
- 10. Василишин Б.В., Иссинский И.Б., Михайлов В.А., Таровик М.Н. Сообщ. ОИЯИ 9-86-512. Дубна, 1986.

Получено 18 ноября 2022 г.