ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

МОДЕЛИРОВАНИЕ ИЗМЕРЕНИЯ ДОЛЕЙ КВАРКОВЫХ, ГЛЮОННЫХ И НЕИДЕНТИФИЦИРОВАННЫХ СТРУЙ В ВЫБОРКЕ АДРОННЫХ СТРУЙ ДЛЯ LHC

С. Г. Шульга^{а, б, 1}, Д.В.Будковский^{а, в, 2}

^{*a*} Объединенный институт ядерных исследований, Дубна ^{*6*} Гомельский государственный университет им. Ф. Скорины, Гомель, Белоруссия ^{*в*} Институт ядерных проблем Белорусского государственного университета, Минск

С применением генераторов MADGRAPH5 и PYTHIA8 выполнено моделирование измерения долей кварковых, глюонных и неидентифицированных струй в выборке струй для pp-столкновений при энергии $\sqrt{s} = 13$ ТэВ на LHC. Показано, что неопределенность измерения долей кварковых и глюонных струй не превышает 0,1 %, а для неидентифицированных струй — не более 0,2 % в области поперечных импульсов струи до 1 ТэВ. В этих оценках не учтены неопределенности реконструкции струй в детекторе и теоретические неопределенности.

Using MADGRAPH5 and PYTHIA8 generators, simulation of measurements of fractions of quark, gluon and unidentified jets was performed for pp-collisions with $\sqrt{s} = 13$ TeV at the LHC. It is shown that in the region of jet transverse momenta up to 1 TeV, the measurement uncertainties of the quark and gluon jet fractions do not exceed 0.1%, and for unidentified jets — no more than 0.2%. These estimates do not take into account the uncertainties in the reconstruction of jets in the detector and the theoretical uncertainties.

PACS: 44.25.+f; 44.90.+c

введение

Свойства адронных струй зависят от поперечного импульса ($P_T^{\rm jet}$) и аромата партона, который инициировал струю. Для определения аромата струи конус адронной струи геометрически сопоставляется с направлением импульса партона жесткого процесса, полученного с применением квантовой хромодинамики (КХД). В задаче об измерении долей кварковых (q) и глюонных (g) струй важно использовать модель, которая как можно более точно воспроизводит конфигурацию первичных партонов. Генератор жесткого партонного процесса MADGRAPH5 [1] позволяет моделировать события в порядке КХД «Next-to-Leading Order» (NLO). Генератор РҮТНІА8 [2] получает первичную партонную конфигурацию жесткого процесса и выполняет развитие партонных ливней, адронизацию и распады. MADGRAPH5 в комбинации с универсальным генератором событий РҮТНІА8 образуют популярную схему моделирования

¹E-mail: shulga@jinr.ru

²E-mail: budkouski@jinr.ru

струйных событий на LHC. В настоящей работе струи собираются с использованием алгоритма anti-k_T [3] с угловым параметром R = 0,4, имплементированного в пакет FASTJET [4]. Для измерения долей q/g-струй используется q/g-дискриминатор правдоподобия (D) [5], который является вещественным числом в интервале [0,1] и характеризует вероятность идентифицирования q(g)-струи.

Долю *g*-струй в выборке можно определить путем фитирования измеренного нормированного *D*-распределения струй H(D) комбинацией модельных *D*-распределений q/g-струй [6] с долей *g*-струй α_q в качестве неизвестного параметра фитирования:

$$H(D) \sim \alpha_q H_q(D) + (1 - \alpha_q) H_q(D). \tag{1}$$

Фитирование выполняется посредством алгоритма MINUIT2 [7]. Минимизация выполняется методом наименьших квадратов (НК) и методом взвешенных наименьших квадратов (ВНК).

В любой выборке струй наряду с q/g-струями имеется подвыборка неидентифицированных струй (*x*-струи), которые порождаются струями вторичных партонов. Если присоединить *x*-струи к *q*-струям, то уравнение (1) позволяет определить долю *g*-струй. Аналогично, если присоединить *x*-струи к *g*-струям и заменить *g* на g + x, то уравнение (1) позволяет определить долю кварковых струй $(1 - \alpha_{g+x}) \equiv \alpha_q$. Чтобы измерить долю *x*-струй можно использовать формулу $\alpha_x \equiv 1 - \alpha_q - \alpha_g$ [8].

МОДЕЛИРОВАНИЕ ИЗМЕРЕНИЯ ДОЛЕЙ КВАРКОВЫХ, ГЛЮОННЫХ И НЕИДЕНТИФИЦИРОВАННЫХ СТРУЙ

На рис. *а* показано сечение рождения инклюзивной струи в зависимости от P_T^{jet} . На рис. *б* показано число струй, соответствующее интегральной светимости 100 фб⁻¹. Для определенности здесь используется P_T^{jet} -биннинг, применяемый в работе [9].

Дифференциальное сечение рождения инклюзивной струи (a) и число струй в бинах по $P_T^{\rm jet}$ (b) в области быстрот $|y^{\rm jet}| \in [0,2]$, полученные с применением комбинации генераторов MADGRAPH5+PYTHIA8 для pp-взаимодействий на LHC с энергией $\sqrt{s} = 13$ ТэВ при интегральной светимости 100 фб⁻¹

Интервал $P_T^{\text{jet}} \in [49, 2500]$ ГэВ разбит на 46 неэквидистантных бинов. Фитирование (1) выполняется в каждом бине.

В табл. 1 показаны средние доли глюонных, кварковых и неидентифицированных струй для некоторых $P_T^{\rm jet}$ -бинов. Эти значения получены прямым подсчетом количества струй с заданным ароматом. Фитирование с применением уравнения (1) воспро-изводит эти значения в пределах статистической неопределенности.

Таблица 1. Доли q/g/x-струй, полученные с применением комбинации генераторов МАDGRAPH5+РҮТНІА8 для *pp*-взаимодействий на LHC с энергией $\sqrt{s} = 13$ ТэВ

Неопределенность	$P_T^{ m jet}$ -бин, ГэВ				
измерения	[56, 64]	[196, 220]	[330, 362]	[507, 548]	[737, 790]
α_g	0,5950	0,5578	0,5018	0,4205	0,4028
α_q	0,3048	0,3786	0,4387	0,4813	0,5969
$lpha_x$	0,1002	0,0636	0,0595	0,0982	0,0003

В табл. 2, 3, 4 показаны неопределенности измерения долей глюонных, кварковых и неидентифицированных струй соответственно, полученные с применением уравнения (1). Первые два столбца в таблицах — это статистические неопределенности (stat). Для фитирования используются гистограммы H(D), $H^{g/q}(D)$ с числом D-бинов, равным 25. Значения в скобках получены для числа D-бинов 50.

Таблица 2. Статистические и систематические неопределенности для измерения α_g в зависимости от числа струй в выборке

Число	stat	stat	$syst_1$	syst_2	tot_g
струй	([56,64] ГэВ)	([196, 220] ГэВ)	([196, 220] ГэВ)	([196,220] ГэВ)	([196, 220] ГэВ)
500	0,050(-)	0,040(-)	—	0,017	0,066(-)
1000	0,040(0,036)	0,025(0,028)	0,0060	0,0004	0,026(0,029)
10000	0,013(0,012)	0,007(0,007)	0,0006	0,0021	0,0073(0,0073)
100000	0,004(0,0037)	0,0020(0,0023)	0,0006	0,0011	0,0024(0,0026)
1000000	0,0010(0,0014)	0,0008(0,0010)	0,0003	0,00053	0,0010(0,0012)
1000000	0,0004(0,0006)	0,0002(0,0004)	0,00003	0,00002	0,0002(0,0004)

Таблица 3. Статистические и систематические неопределенности для измерения α_q в зависимости от числа струй в выборке

Число	stat	stat	$syst_1$	$syst_2$	tot_q
струй	([56,64] ГэВ)	([196, 220] ГэВ)	([196, 220] ГэВ)	([196, 220] ГэВ)	([196, 220] ГэВ)
500	0,046(-)	0,039(-)	—	0,018	—
1000	0,032(0,032)	0,023(0,028)	0,0060	0,0003	0,024(0,029)
10000	0,010(0,010)	0,008(0,007)	0,0005	0,0021	0,0083(0,0073)
100000	0,0035(0,0032)	0,0025(0,0023)	0,0007	0,0012	0,0029(0,0027)
1000000	0,0010(0,0013)	0,0009(0,0010)	0,0002	0,00053	0,0011(0,0011)
1000000	0,0003(0,0005)	0,0002(0,0004)	0,00002	0,00006	0,0002(0,0004)

Число	stat	stat	$syst_1$	$syst_2$	$tot_{x,1}$	$tot_{x,2}$
струй	([56,64]ГэВ)	([196,220] ГэВ)	([196,220]ГэВ)	([196,220] ГэВ)	([196,220]ГэВ)	([196,220] ГэВ)
500	0,71(-)	0,011(-)	—	0,090	—	—
1000	0,92(0,38)	0,046(0,025))	0,007	0,031	0,056(0,040)	0,035(0,041)
10000	0,66(0,17)	0,015(0,010)	0,038	0,070	0,081(0,080)	0,010(0,011)
100000	0,059(0,067)	0,0050(0,0031)	0,0042	0,010	0,012(0,011)	0,0038(0,0037)
1000000	0,035(0,025)	0,0017(0,0007)	0,0076	0,0010	0,0079(0,0077)	0,0015(0,0016)
1000000	0,012(0,014)	0,0005(0,0003)	0,0004	0,0008	0,0010(0,0009)	0,0003(0,0006)

Таблица 4. Статистические и систематические неопределенности для измерения α_x в зависимости от числа струй в выборке

Систематическая неопределенность, связанная с зависимостью от числа D-бинов, $syst_1$, вычисляется как абсолютная величина разности значений измеренной величины с числом D-бинов 50 и 25. Для $syst_1$ измерения выполняются в 10-м $P_T^{\rm jet}$ -бине. Зависимость величины $syst_1$ от $P_T^{\rm jet}$ незначительная.

Систематическая неопределенность, связанная с методом фитирования, syst₂, вычисляется как абсолютная величина разности значений измеренной величины для метода НК и метода ВНК [7]. Для расчета stat и syst₁ применяется метод ВНК. Данные для syst₂ получены для $P_T^{\rm jet}$ -бина (196, 220) ГэВ с числом *D*-бинов 25. Полная неопределенность определяется по формуле $tot_{q,g,x} = \sqrt{\text{stat}^2 + \text{syst}_1^2 + \text{syst}_2^2}$.

Согласно табл. 2 и 3 с ростом числа струй, $N^{\rm jet}$, значение stat уменьшается по правилу для стандартной ошибки среднего $1/\sqrt{N^{\rm jet}}$.

Значения stat для *x*-струй не пропорциональны $1/\sqrt{N^{\text{jet}}}$ (см. табл. 4). Это означает, что *D*-распределения для *x*-струй определены плохо и вносят дополнительную неопределенность в измерения. Однако доля струй вторичных партонов может быть вычислена с применением измеренных долей q/g-струй по формуле $\alpha_x = 1 - \alpha_g - \alpha_q$. В этом случае неопределенность измерения α_x определяется по формуле $\operatorname{tot}_{x,2}^2 = \sqrt{\operatorname{tot}_g^2 + \operatorname{tot}_q^2}$. Значения $\operatorname{tot}_{x,2}$ существенно меньше, чем $\operatorname{tot}_{x,1}$, и подчиняются правилу для стандартной ошибки среднего: $\operatorname{tot}_{x,2} \sim 1/\sqrt{N^{\text{jet}}}$ (см. табл. 4).

Из табл. 2, 3, 4 следует, что статистическая неопределенность является определяющей для измерения долей струй с заданным ароматом.

Согласно рисунку, в последнем P_T^{jet} -бине (2366, 2500) ГэВ число струй не менее 1000. Таким образом, LHC предоставляет возможность измерить доли q/g/x-струй с точностью 2–3% вплоть до $P_T^{\text{jet}} = 2,5$ ТэВ (без учета эффектов реконструкции струй и теоретических неопределенностей).

ЗАКЛЮЧЕНИЕ

В работе представлены результаты моделирования измерения долей кварковых, глюонных и неидентифицированных струй для *pp*-столновений при энергии \sqrt{s} = 13 ТэВ на LHC с применением комбинации генераторов MADGRAPH5 и PYTHIA8. Показано, что в области до $P_T^{\rm iet} = 1$ ТэВ неопределенность измерения долей q/g-струй не превышает 0,1 %, а для *x*-струй не более 0,2 %. В анализе данных из реального эксперимента эти неопределенности увеличатся за счет неопределенностей реконструк-

ции струй в детекторе. Измерения фракций g-струй имеют неустранимую модельную зависимость используемых шаблонов $H_{q/g}(D)$. Кроме этого, дискриминатор строится («тренируется») на основе моделей, которые могут не соответствовать реальным данным. Это внесет дополнительные теоретические неопределенности в измерения. Методика учета модельных неопределенностей для измерения долей q/g/x-струй находится в стадии разработки и будет представлена в отдельной работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Alwall J. et al.* The Automated Computation of Tree-Level and Next-to-Leading Order Differential Cross Sections, and Their Matching to Parton Shower Simulations // JHEP. 2014. V. 07. P. 079.
- Sjöstrand T., Mrenna S., Skands P. A Brief Introduction to PYTHIA 8.1 // Comput. Phys. Commun. 2008. V. 178, No. 11. P. 852–867.
- Cacciari M., Salam G.P., Soyez G. The Anti-k_T Jet Clustering Algorithm // JHEP.2008. V.04. P.063.
- 4. Cacciari M., Salam G.P., Soyez G. FastJet User Manual // Eur. Phys. J. C. 2012. V.72. P. 1896.
- CMS Collab. Jet Algorithms Performance in 13 TeV Data: CMS Physics Analysis Summary. CMS-PAS-JME-16-003. 2017.
- Shulha S., Budkouski D. Methodology for Measuring Gluon Jet Fraction and Characteristics of Quark and Gluon Jets in Hadron–Hadron Collisions // Phys. Part. Nucl. Lett. 2021. V. 18, No. 2. P. 239–243.
- 7. James F., Roos M. Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations // Comput. Phys. Commun. 1975. V. 10. P. 343.
- 8. *Shulha S., Budkouski D.* On Measuring the Fractions of Jets of Primary and Secondary Quarks and Gluons in Hadron–Hadron Collisions // Phys. Part. Nucl. 2023. V. 54, Iss. 7.
- 9. *Tumasyan A. et al. (CMS Collab.).* Measurement and QCD Analysis of Double-Differential Inclusive Jet Cross Sections in Proton–Proton Collisions at $\sqrt{s} = 13$ TeV // JHEP. 2022. V. 02. P. 14.

Получено 14 ноября 2022 г.