ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

СИСТЕМА ИНЖЕКЦИИ ИОНОВ УГЛЕРОДА ДЛЯ КОМПЛЕКСА ЛУЧЕВОЙ ТЕРАПИИ

Ю. А. Буданов¹, В. А. Калинин, Б. А. Фролов

Институт физики высоких энергий им. А. А. Логунова Национального исследовательского центра «Курчатовский институт», Протвино, Россия

На площадке НИЦ «Курчатовский институт» – ИФВЭ в Протвино рассматривается проект по созданию комплекса лучевой терапии пучком ионов углерода с целью освоения технологии лечения радиорезистентных онкологических новообразований [1,2]. Ускорительный комплекс будет состоять из следующих основных частей: лазерного источника ионов, канала согласования, линейного ускорителя, ионного синхротрона. Линейный ускоритель должен обеспечить на выходе импульсный ток ускоренных ионов С⁴⁺ не менее 1 мА. В качестве первой секции линейного ускорителя включает расчеты систем экстракции ионов, канала согласования и динамики пучка в RFQ для оценки качества пучка на выходе RFQ. В результате проведенных расчетов разработана система инжекции пучка ионов углерода С⁴⁺, которая приводит к росту эмиттанса пучка в канале согласования не более 30%, к возможности диагностики и корректировки пучка до RFQ и к практически полному захвату пучка в ускоряющей системе.

A project to create a complex of radiation therapy with a beam of carbon ions for the purpose of developing the technology of treatment of radioresistant oncological neoplasms is being considered at the site of the NRC "Kurchatov Institute" – IHEP in Protvino [1, 2]. The accelerator complex will consist of the following main parts: laser ion source, matching channel, linear accelerator, ion synchrotron. The linear accelerator must provide at the output a pulse current of accelerated ions C^{4+} of at least 1 mA. RFQ is supposed to be used as the first section of the linear accelerator. Modeling of the injection system for a linear accelerator includes calculations of the ion extraction system, the matching channel and the beam dynamics in RFQ to assess the quality of the beam at the RFQ output. A as a result of the calculations, a C^{4+} carbon ion beam injection system has been developed, which leads to an increase in the beam emittance in the matching channel of no more than 30%, to the possibility of diagnostics and correction of the beam up to RFQ and to the almost complete capture of the beam in the accelerating system.

PACS: 29.27.Ac

введение

Опыт работы в ОИЯИ, ИФВЭ, ИТЭФ по генерации многозарядных ионов углерода с помощью СО₂-лазера показал, что пучок имеет сложную временну́ю и зарядовую структуру. Плотность тока ионов, поступающих на эмиссионную поверхность,

¹E-mail: Yury.Budanov@ihep.ru

и зарядовый состав пучка меняются в течение импульса тока. Необходимая для ускорительного комплекса длительность ионного пучка в несколько микросекунд достигается благодаря тепловому разбросу скоростей ионов в плазме и дрейфу ионов от мишени до плоскости экстракции. Эксперименты в ИТЭФ по производству ионов C⁴⁺ с помощью CO₂-лазера показали, что четырехзарядные ионы составляют более 50% пучка [3]. В головной части токового импульса основную часть составляют ионы с зарядом Z = 4. В представленных далее данных плотность тока при проведении моделирования предполагалась постоянной и полагалось, что плазма содержит только ионы углерода с зарядом Z = 4.

экстракция ионов углерода

С помощью пакета IBSimu было проведено моделирование ионно-оптической системы вытягивания ионов из плазмы для двух случаев, когда отбор ионов производится со свободной и с фиксированной границ плазмы. Вытягивающее напряжение 100 кВ. Моделирование проводилось для двух значений диаметра апертуры плазменного электрода: d = 1,5 см и d = 2 см. При экстракции ионов со свободной плазменной границы начальная продольная энергия ионов 100 эВ, поперечная энергия 10 эВ. Число частиц при моделировании 20 000. При d = 1,5 см и плотности тока ионов в плоскости вытягивания j = 6 мА/см² нормализованный эмиттанс на выходе системы экстракции равен $0,12 \pi$ мм мрад. На величину эмиттанса пучка на выходе системы в плазме. При начальной поперечной энергии 5 эВ величина нормализованного эмиттанса на выходе системы экстракции существенное влияние оказывает начальная поперечная энергия

Известно [4], что оптимальные ионно-оптические характеристики пучка из ионного источника можно получить при условии однородности эмиссии с поверхности плазмы и стабильности ее во времени. Вследствие особенностей пучка ионов углерода, генерируемого лазерным ионным источником (сложный зарядовый состав, нестационарность плазменного потока за время импульса, широкий разброс энергии ионов), для фиксации границы плазмы в плоскости плазменного электрода размещается сетка и отбор ионов из плазмы осуществляется с фиксированной границы с помощью двухсеточного плазменного диода (напряжение между сетками 5 кВ). Величина нормализованного эмиттанса на выходе системы экстракции равна $0,08 \ \pi \ {
m Mm} \cdot {
m Mpa}$ при d = 1,5 см. При вытягивании ионов с фиксированной границы величина эмиттанса на выходе системы экстракции уменьшилась по сравнению со случаем вытягивания ионов со свободной плазменной границы и, кроме того, поперечная температура практически не влияла на значение эмиттанса и фазовые характеристики пучка. С увеличением диаметра плазменного электрода выходной эмиттанс растет. В табл. 1 приведены значения нормализованного эмиттанса на выходе системы экстракции при d = 1,5 см и d = 2 см для обоих случаев, когда отбор ионов производится со свободной и с фиксированной границ плазмы. В скобках указаны величины токов пучка на выходе системы экстракции. На рост эмиттанса влияет в основном увеличение радиуса апертуры в плоскости вытягивания пучка. Из сравнения результатов моделирования двух схем экстракции ионов из плазмы предпочтительнее представляется система вытягивания ионов с фиксированной плазменной границы при диаметре плазменного электрода d = 1,5 см (ток на выходе равен 10,6 мА).

<i>d</i> , см	Поперечная энергия ионов ¹² С ⁴⁺ в плазме, эВ	$arepsilon_{ m nrms}$ для свободной границы плазмы, π мм \cdot мрад	ε _{nrms} при фиксированной границе плазмы, π мм·мрад	
1.5	$5 (j = 6 \text{ мA/см}^2)$	0,098 (10,6 мА)	0,08 (10,6 мА)	
1,0	$10 (j = 6 \mathrm{mA/cm^2})$	0,12 (10,6 мА)	0,08 (10,6 мА)	
	$5(j=3,4\mathrm{mA/cm^2})$	0,11 (10,3 мА)	0,105 (18,8 мА)	
2	$5(j = 6 \text{ mA/cm}^2)$	0,14 (20,1 мА)		
	$10 (j = 3,4 \text{ мA/см}^2)$	0,145 (10,2 мА)	0 108 (18 8 MA)	
	$10 (j = 6 \text{ mA/cm}^2)$	0,17 (19,8 мА)	0,100 (10,0 mil)	

Таблица 1. Эмиттанс пучка на выходе системы экстракции (в скобках указана величина тока)

На рис. 1 показаны траектории ионов углерода С⁴⁺ и эквипотенциали, а на рис. 2 приведен фазовый портрет при вытягивании ионов с фиксированной плазменной границы.

Рис. 1. Пучок ионов углерода C^{4+} и эквипотенциали при вытягивании ионов с фиксированной границы плазмы, $j = 6 \text{ мA/см}^2$

Рис. 2. Фазовый портрет пучка на выходе системы экстракции при вытягивании ионов с фиксированной границы плазмы и $j = 6 \text{ мA/cm}^2$

МОДЕЛИРОВАНИЕ ПУЧКА ДЛЯ LEBT ИЗ ДВУХ СОЛЕНОИДОВ

Для фокусировки пучка на входе в RFQ после экстракции ионов углерода предлагается использовать систему из двух соленоидов, чтобы обеспечить две степени свободы для согласования пучка со входом RFQ. Поля соленоидов рассчитывались с помощью программы ANSYS. Магнитное поле рассчитывалось на сетке $60 \times 60 \times 500$ и записывалось в виде массива. Полученные данные магнитных полей использовались при расчете динамики пучка в канале согласования с помощью программы IBSimu. Были проведены расчеты магнитного поля для трех значений длин соленоидов — 0,2, 0,3 и 0,4 м, радиус апертуры — 0,03 м. Фазовые координаты пучка на входе в согласующий канал были взяты из расчета системы экстракции пучка из лазерного источника ионов. Изменение параметров канала согласования пучка ограничено необходимостью минимизации роста эмиттанса пучка на выходе RFQ и минимизацией потерь пучка в канале RFQ. Кроме того, важным условием при выборе параметров системы согласования является требование возможности установки по крайней мере двух корректирующих элементов пучка до входа в RFQ (для компенсации возможных углового смещения и отклонения пучка от оси). Это приводит к необходимости наличия значительного дрейфа перед RFQ. Было проведено моделирование пучка в канале согласования при различных значениях этого дрейфа и величинах магнитных полей соленоидов.

При выборе расстояния между соленоидами желательно предусмотреть возможность размещения между ними системы оперативной диагностики пучка и системы вакуумной откачки. В табл. 2 представлены геометрические параметры расположения элементов согласующей системы (L1 — расстояние от плоскости экстракции пучка до первого соленоида, L2 — расстояние между соленоидами, L3 — расстояние от второго соленоида до RFQ, Ls1 и Ls2 — длины соленоидов, в скобках указаны величины магнитных полей соленоидов), а также приведены значения нормализованных гms эмиттансов пучка на выходе канала согласования для нескольких вариантов расчета. Для выбранной геометрии расчеты проводились при разных значениях магнитных полей соленоидов B1 и B2. Критерием выбора оптимальных параметров *согласующего канала* было получение минимальной величины эмиттанса пучка на выходе канала.

-1, M	LSI, M (ВІ, ІЛ)	L2, M	Ls2, м (B2, Iл)	L3, м	$\varepsilon_{ m nrms},\pi$ мм·мрад
0,2	0,3 (0,521)	0,2	0,3 (0,573)	0,15	0,088
0,1	0,4 (0,464)	0,5	0,4 (0,481)	0,3	0,089
0,2	0,3 (0,417)	0,5	0,3 (0,549)	0,43	0,103
0,2	0,3 (0,469)	0,4	0,3 (0,625)	0,25	0,095

Таблица 2. Параметры согласующей линии

Рис. 3. Пучок ионов углерода С⁴⁺ в канале согласования

Рис. 4. Фазовый портрет пучка на выходе канала согласования для длины дрейфа $L3=0,\!43\,$ м

Рис. 5. Профиль пучка на выходе канала согласования для длины дрейфа L3 = 0,43 м

Фазовые координаты пучка, полученные на выходе системы согласования, в дальнейшем использовались для моделирования динамики в RFQ. На рис.3 показан пучок ионов углерода C^{4+} в согласующем канале для длины дрейфа L3 = 0,43 м, а на рис.5 приведен фазовый портрет на выходе канала.

На рис. 3 показаны траектории ионов углерода C^{4+} в согласующем канале для длины дрейфа L3 = 0,43 м, а на рис. 4 и 5 приведены, соответственно, фазовый портрет и профиль пучка на выходе согласующей линии.

МОДЕЛИРОВАНИЕ ПУЧКА В RFQ

Критерием выбора параметров системы инжекции было получение минимальной величины эмиттанса пучка на выходе RFQ. Рассматривалась секция RFQ с частотой 200 МГц и энергией 0,6 МэВ/нуклон. Как показали расчеты динамики пучка в RFQ,

Рис. 6. Фазовый портрет пучка С⁴⁺ на выходе из RFQ

Параметры эмиттанса на входе в RFQ	Параметры эмиттанса на выходе из RFQ			
X-X'				
Эмиттанс (rms) =	Эмиттанс (rms) =			
$= 0,1071 \pi$ мм·мрад (норм.)	$= 0,1912 \pi$ мм·мрад (норм.)			
Эмиттанс (90,00%) =	Эмиттанс (90,00%) =			
$= 0,4345 \pi$ мм·мрад (норм.)	$= 0,9503 \pi$ мм·мрад (норм.)			
$eta=0,\!1121$ мм/мрад	$eta=0,\!1429$ мм/мрад			
$\alpha = 0,5232$	$\alpha = -1,6972$			
Y-Y'				
Эмиттанс (rms) =	Эмиттанс (rms) =			
$= 0,1047 \pi$ мм мрад (норм.)	$= 0,1848 \pi$ мм·мрад (норм.)			
Эмиттанс (90,00%) =	Эмиттанс (90,00%) =			
$= 0,4193 \pi$ мм·мрад (норм.)	$= 0.9377 \; \pi$ мм \cdot мрад (норм.)			
eta=0,1052 мм/мрад	$eta=0,\!1221$ мм/мрад			
$\alpha = 0,4818$	$\alpha = 1,6849$			

Таблица 3. Изменение параметров эмиттанса пучка при ускорении в RFQ

наилучший результат достигается при значениях L3 = 0,43 м из табл. 2. Несмотря на нелинейность в начальном для RFQ распределении заряда по пучку, захват в режим ускорения составляет 99%. Полученные данные по последовательному моделированию динамики пучка ионов углерода C^{4+} в составе источника, оптимизированной системы согласования и начальной части ускорителя дают хороший результат по захвату и ускорению пучка ионов в RFQ. На рис. 6 показаны фазовые портреты пучка ионов углерода на выходе из RFQ, а в табл. 3 приведены параметры эмиттанса на входе и выходе из RFQ. На выходе RFQ эмиттанс 90% пучка составляет менее 1 π мм мрад, что оставляет достаточно возможностей для ускорения пучка в следующих секциях линейного ускорителя.

ЗАКЛЮЧЕНИЕ

В результате проведенных расчетов разработана система инжекции пучка ионов углерода C^{4+} , которая приводит к росту эмиттанса пучка в канале согласования не более 30%, к возможности диагностики и корректировки пучка до RFQ и к практически полному захвату пучка в ускоряющей системе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Антипов Ю. М., Солдатов А. П. Создание центра ионно-лучевой терапии // Мед. физика. 2016. № 2(70). С. 5–9.
- 2. Центр ионной лучевой терапии на базе ускорительного комплекса У-70. http://www.ihep.su/files/Journal_2017_Final_2_05_02 2018.pdf.
- Losev A. A., Balabaev A., Hrisanov I. et al. // Proc. of the 26th Russ. Part. Accel. Conf. (RuPAC 2018). Protvino, Russia, Oct. 1-5, 2018. THPSC47.
- 4. Браун Я. Физика и технология источников ионов. М.: Мир, 1998.

Получено 15 сентября 2023 г.