ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

МОДЕЛЬНО-НЕЗАВИСИМЫЕ ОГРАНИЧЕНИЯ НА ПАРАМЕТРЫ ДОПОЛНИТЕЛЬНЫХ НЕЙТРАЛЬНЫХ ТЯЖЕЛЫХ БОЗОНОВ НА БУДУЩИХ e^+e^- -КОЛЛАЙДЕРАХ

Д. В. Синегрибов^{а, б, 1}, В. В. Андреев^{6, 2}, В. Р. Куриленко^{а, б}, И. А. Серенкова^а

^а Гомельский государственный технический университет им. П. О. Сухого, Гомель, Беларусь ⁶ Гомельский государственный университет им. Ф. Скорины, Гомель, Беларусь

Представлена методика получения ограничений на новые, обобщенные, эффективные параметры Z'-бозона для процесса $e^+e^- \to f\bar{f}~(f \neq e)$.

This paper presents a methodology for obtaining constraints on new, generalized, effective Z'-boson parameters for the $e^+e^- \rightarrow f\bar{f}$ $(f \neq e)$ process.

PACS: 12.60.-i; 12.60.Cn; 13.66.Hk

введение

Стандартная модель (СМ) в настоящее время рассматривается как низкоэнергетическое приближение будущей фундаментальной теории, описывающей все взаимодействия. СМ согласуется практически со всеми экспериментальными данными, но имеет и явные недостатки, которые являются причиной для дальнейшей, более глубокой проверки СМ и поиска новой физики. Задача этого поиска является актуальной для e^+e^- -ускорителей следующего поколения: ILC ($\sqrt{s} = 0.25, 0.5, 1$ ТэВ), CLIC ($\sqrt{s} = 0.34, 1.5, 3$ ТэВ), FCC-ее ($\sqrt{s} = 91, 161, 240, 365$ ГэВ), CEPC ($\sqrt{s} = 91, 160, 250$ ГэВ) [1]. ILC и CLIC являются наилучшими вариантами для поиска и изучения нестандартной физики из-за высокой энергии и наличия возможности продольной поляризации e^+ - и e^- -пучка.

Будущие эксперименты либо согласуются со СМ, либо имеют отклонения от ее предсказаний. В первом случае данные можно использовать для ограничения расширений СМ. В случае наличия существенного отклонения можно интерпретировать его, используя параметры массивного калибровочного бозона Z' [2]. Современные ограничения на массу Z', полученные на LHC, $m_{Z'} \sim 5150$ ГэВ [3], что заметно

¹E-mail: dvsinegribov@gmail.com

²E-mail: vik.andreev@gsu.by

больше в сравнении с планируемыми энергиями ILC и CLIC. Поэтому предоставляется возможность исследовать только косвенные эффекты Z', проявляющиеся в виде отклонений наблюдаемой от поведения CM, тогда экспериментальную информацию можно представить в виде ограничений на параметры Z'. Полученные ограничения можно использовать для исключения или подтверждения моделей Z' (SSM, LRM, ALRM, E_6 -модели и др.) [2,4]. Актуальной задачей является разработка стратегии определения ограничений с большей точностью без увеличения светимости или энергии ускорителя, с использованием различных оптимальных условий эксперимента и наблюдаемых.

ДИФФЕРЕНЦИАЛЬНОЕ СЕЧЕНИЕ РЕАКЦИИ $e^+e^- o far{f}$

Для выполнения модельно-независимого анализа необходимо найти представление дифференциального сечения для процесса $e^+e^- \rightarrow f\bar{f}$, введя обобщенные, эффективные параметры, линейно входящие в сечение. Это необходимо для корректного использования методики по нахождению ограничений на параметры Z'.

Для такой цели дифференциальное сечение рассеяния для процесса $e^+e^- \rightarrow f\bar{f}(f \neq e)$ в приближении Борна можно представить в следующем виде:

$$\frac{d\sigma^{\rm SM+Z'}}{dz}(P^-,P^+) = \frac{d\sigma^{\rm SM}}{dz} + \frac{d\sigma^{Z'}}{dz} = N_C(1-P^-P^+)\frac{\alpha^2\beta\pi}{8s} \times \left[(1-z\beta)^2 q_1^{\rm SM+Z'} + (1+z\beta)^2 q_2^{\rm SM+Z'} + q_3^{\rm SM+Z'}\right], \quad (1)$$

где $z \equiv \cos \theta$ (θ — угол между e^- и f); N_C — цветовой фактор ($N_C = 1$, если f — лептон, и $N_C = 3$, если f — кварк); α — постоянная тонкой структуры; P^+ и P^- — степени продольной поляризации e^+ - и e^- -пучка; $\beta = \sqrt{1 - 4m_f^2/s}$ ($\eta = \sqrt{1 - \beta^2}$), m_f — масса конечного фермиона; \sqrt{s} — энергия столкновения.

Параметры $q_{1,2,3}^{\text{SM}+Z'}$ определяются комбинациями $q_{\lambda_e,\lambda_f}^{\text{SM}+Z'}$ (λ_e и λ_f — спиральности начального и конечного состояния) и функцией $P_{\text{eff}} = (P^- - P^+)/(1 - P^- P^+)$:

$$q_{1}^{\text{SM}+Z'} = p_{\text{eff}}^{-} |q_{LR}^{\text{SM}+Z'}|^{2} + p_{\text{eff}}^{+} |q_{RL}^{\text{SM}+Z'}|^{2},$$

$$q_{2}^{\text{SM}+Z'} = p_{\text{eff}}^{-} |q_{LL}^{\text{SM}+Z'}|^{2} + p_{\text{eff}}^{+} |q_{RR}^{\text{SM}+Z'}|^{2},$$

$$q_{3}^{\text{SM}+Z'} = 2\eta^{2} \left(p_{\text{eff}}^{-} \Re[q_{LL}^{\text{SM}+Z'}q_{LR}^{*\text{SM}+Z'}] + p_{\text{eff}}^{+} \Re[q_{RL}^{\text{SM}+Z'}q_{RR}^{*\text{SM}+Z'}] \right), \qquad (2)$$

где $p_{\text{eff}}^{\pm} = 1 \pm P_{\text{eff}}.$

В свою очередь, параметры $q_{\lambda_e,\lambda_f}^{\text{model}}$, содержащие характеристики Z'-бозона (константы связи, массу и полную ширину), определяются формулами

$$q_{LL}^{SM+Z'} = \sum_{i} \frac{sg_{i,e}^{L} g_{i,f}^{L}}{s - m_{i}^{2} + im_{i}\Gamma_{i}}, \quad q_{RR}^{SM+Z'} = \sum_{i} \frac{sg_{i,e}^{R} g_{i,f}^{R}}{s - m_{i}^{2} + im_{i}\Gamma_{i}},$$

$$q_{LR}^{SM+Z'} = \sum_{i} \frac{sg_{i,e}^{L} g_{i,f}^{R}}{s - m_{i}^{2} + im_{i}\Gamma_{i}}, \quad q_{RL}^{SM+Z'} = \sum_{i} \frac{sg_{i,e}^{R} g_{i,f}^{L}}{s - m_{i}^{2} + im_{i}\Gamma_{i}},$$
(3)

где $g_{i,f}^{L,R} \equiv g_{i,f}^{\mp}$ — фермионные константы связи с бозонами $i = \gamma, Z^0, Z'$ с соответствующими массами m_i и ширинами распада Γ_i .

Фермионные константы связи с Z^0 и γ определяются значениями электрических зарядов Q_f и третьих компонент изоспина t_f :

$$g_{Z^0,f}^{\rho} = \frac{\delta_{\rho,-} t_f/2 - Q_f s_w^2}{s_w c_w}, \quad g_{\gamma,f}^{\rho} = -Q_f, \quad \rho = \mp,$$
(4)

где s_w и c_w — синус и косинус угла Вайнберга-Салама θ_w .

В формуле (4) множитель $e = \sqrt{4\pi\alpha}$ вынесен из всех констант связи, включая и Z'.

Для получения ограничений удобно ввести обобщенные, эффективные параметры отклонения $\Delta q_{1,2,3}$,

$$\Delta q_1 \left(p_{\text{eff}}^+, p_{\text{eff}}^- \right) = q_1^{\text{SM}+Z'} - q_1^{\text{SM}},$$

$$\Delta q_2 \left(p_{\text{eff}}^+, p_{\text{eff}}^- \right) = q_2^{\text{SM}+Z'} - q_2^{\text{SM}},$$

$$\Delta q_3 \left(p_{\text{eff}}^+, p_{\text{eff}}^- \right) = q_3^{\text{SM}+Z'} - q_3^{\text{SM}},$$
(5)

которые определяют отклонение дифференциального сечения процесса $e^+e^- \to f\bar{f}$ от значения в СМ.

МЕТОДИКА ПОЛУЧЕНИЯ ОГРАНИЧЕНИЙ

Методика оценки ограничений на эффективные параметры основана на методе наименьших квадратов. Будем исходить из предположения о том, что результаты будущих экспериментов согласуются с предсказаниями СМ в пределах ожидаемой точности измерений. Тогда ограничения на параметры $\Omega = \{\Delta q_{1,2,3}\}$ можно найти, используя критерий

$$\chi^{2}(\mathbf{\Omega}) = \sum_{i=1}^{\text{bins}} \left[\frac{N_{i}^{\text{SM}+Z'}(\mathbf{\Omega}) - N_{i}^{\text{SM}}}{\delta N_{i}^{\text{SM}}} \right]^{2} \leqslant \chi^{2}_{\text{min}} + \chi^{2}_{\text{C.L}},$$
(6)

где $\chi^2_{\rm min}$ определяется из требования минимального значения функции $\chi^2(\Omega)$. Легко увидеть, что для нашего случая $\chi^2_{\rm min}=0$.

Значение $\chi^2_{C.L}$ задается уровнем достоверности (С. L.). Для 95%-го уровня достоверности, используя определение квантиля, можно найти $\chi^2_{C.L} = 3,84,5,99,7,82$ для количества параметров, равного 1, 2 и 3 [3].

Для вышеизложенного анализа полезна следующая формула:

$$\chi^2 \left(\hat{\Omega}_i \pm N \sigma_{\hat{\Omega}_i} \right) = \chi^2_{\min} + N^2.$$
(7)

В (7) функция $N = \Phi^{-1}(\beta)$ является квантилем уровня β стандартизованного нормального распределения. Этот вариант используется для нахождения доверительных интервалов параметров, когда не оцениваются интервалы всех других параметров.

Экспериментальной величиной является число событий N_i^{SM} углового интервала $|z| \leq 0.98$. В качестве модельной функции выбирается число событий $N_i^{\text{SM}+Z'}(\Omega)$, индуцируемое взаимодействиями при наличии Z'. Неопределенность СМ записывается в виде случайной ошибки: $\delta N_i^{\text{SM}} = \sqrt{N_i^{\text{SM}}}$.

Число событий в *i*-м бине определяется следующим образом:

$$N_i^{\mathrm{SM}+Z'} = \mathcal{L}_{\mathrm{int}} \epsilon_f \int_{z_i}^{z_{i+1}} \left(\frac{d\sigma^{\mathrm{SM}+Z'}}{dz}\right) dz,\tag{8}$$

где \mathcal{L}_{int} — интегральная светимость; ϵ_f — эффективность регистрации конечного состояния f.

Алгоритм получения ограничений включает в себя три этапа. Для выполнения первого этапа необходимо найти области изменения параметров (5) для различных поляризационных наблюдаемых, включая и неполяризованный случай. Второй этап заключается в получении ограничений на параметры $|q_{i,j}^{\text{SM}+Z'}|$ с помощью системы уравнений (2). Целью третьего этапа является нахождение областей возможного изменения физических параметров Z' ($g_{Z',f}^{L,R}$, $m_{Z'}$ и $\Gamma_{Z'}$).

В данной работе реализуется первый этап изложенной методики на примере процесса $e^+e^- \rightarrow \tau \bar{\tau}$ с использованием энергий столкновения и интегральных светимостей будущего линейного e^+e^- -ускорителя CLIC [5].

Используя (7), получим доверительные интервалы с С. L. = 68,3% на $\Delta q_{1,2}$ для неполяризованного случая, которые представлены в таблице. Для представленного варианта не учитывается наличие корреляции между параметрами.

Учитывая корреляцию между тремя эффективными параметрами $\Delta q_{1,2,3}$ (используя формулу (6)), можно построить области ограничений в виде эллипсоида, представленного на рисунке.

Одномерные ограничения на эффективные параметры $\Delta q_{1,2}$ для неполяризованного случая

\sqrt{s} , ТэВ	$\mathcal{L}_{\mathrm{int}},$ aб $^{-1}$	Δq_1	Δq_2
$^{1,5}_{3,0}$	$^{2,5}_{5,0}$	$^{\pm 0,01}_{\pm 0,015}$	${\ \pm \ 0.019} \ {\ \pm \ 0.026}$

Модельно-независимые ограничения на эффективные параметры $\Delta q_{1,2,3}$, полученные для возможного эксперимента на e^+e^- -ускорителе CLIC ($\chi^2_{\rm C.L} = 3,53$)

В дальнейшем планируется получить доверительные интервалы, используя все комбинации значений P^+ и P^- , и учесть радиационные поправки для возможного улучшения точности ограничений.

ЗАКЛЮЧЕНИЕ

В данной работе предложена методика нахождения ограничений на параметры Z' для процесса $e^+e^- \to f\bar{f}$. Основой методики является представление дифференциального сечения с частично поляризованными начальными состояниями с использованием эффективных параметров, введенных впервые. Получены модельно-независимые ограничения на обобщенные, эффективные параметры $\Delta q_{1,2,3}$ в процессе $e^+e^- \to \tau\bar{\tau}$ для возможного эксперимента на e^+e^- -ускорителе CLIC.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований, представителям которого авторы выражают благодарность.

СПИСОК ЛИТЕРАТУРЫ

- Das A., Dev P. S. B., Hosotani Y., Mandal S. Probing the Minimal U(1)_X Model at Future Electron-Positron Colliders via Fermion Pair-Production Channels // Phys. Rev. D. 2022. V. 105, No. 11. 115030; arXiv:2104.10902 [hep-ph].
- Leike A. The Phenomenology of Extra Neutral Gauge Bosons // Phys. Rep. 1999. V.317. P. 143-250; arXiv:9805494 [hep-ph].
- 3. Workman R. L. et al. Review of Particle Physics // Prog. Theor. Exp. Phys. 2022. V. 2022, No. 8. 083C01.
- Leike A., Riemann S. Z' Search in e⁺e⁻ Annihilation // Z. Phys. C. 1997. V.75. P.341–348; arXiv:9607306 [hep-ph].
- Charles T. K. et al. The Compact Linear Collider (CLIC) 2018 Summary Report. CERN-2018-005-M, CERN-2018-005. V. 2/2018; arXiv:1812.1812.06018 [hep-ph].

Получено 1 февраля 2024 г.