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The relativistic invariant plane wave decompositions of electromagnetic and spinor ˇelds developing
along arbitrary time trajectories in six-dimensional space-time are found. The quanta of the ˇelds
quantized in Hilbert space with indeˇnite metric have always positively deˇned energies. Though,
in contrast to the customary one-time theory, the mass hyperboloid pµpµ = m2 is connected, the
separation of particles and antiparticles can be done uniquely due to the condition of time irreversibility.
Particles and antiparticles are always separated by an energy gap ∆E � 2m. A Hamiltonian and the
corresponding scattering matrix describing the interactions of particles with different time trajectories
are deduced.
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INTRODUCTION

The exciting our imagination hypothesis for a possible multidimensionality of world time
and an existence of hidden time axis has already been considered from various viewpoints
(see [1Ä10] where one can ˇnd detailed bibliography). The investigations of theoretical and
experimental consequences of this hypothesis did not discover any contradictions2. At present
there are no evidences that warrant or, on the contrary, refuse the existence in our world of
additional time axis. One may think that the answer will be found by means of the new huge
gravitational detectors which can be able to observe the predicted multitime components of
gravitational waves created in cosmic cataclysms [9] or the discovery of new heavy spinor
particles predicted by the multitime Dirac equation [13].

1E-mail: barash@jinr.ru
2The predicted in paper [12] too large advance of the Mercury perihelion (2.3 times larger than the observed

one) is due to a used lame potential and occurs within the limits of the experimental errors under more accurate
consideration [10].
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One may also hope to observe the hidden times in virtual quantum processes occurring in
small space-time intervals. To investigate such a possibility we need the respective quantum
mechanical generalization of the multitime relations developed for macroscopic space-time
scales. The ˇrst steps in this direction have been done in papers [8, 13, 14] where the
multitime Dirac equation has been studied. At the next step one must develop a procedure of
ˇeld quantization in six-dimensional space-time

x̂ = (x, t̂) = (x1,x2,x3, t1, t2, t3)

for arbitrary time vectors t̂ of emitted and absorbed quanta1. That will allow one to construct
the scattering matrix describing interactions of particles moving along different time directions.

Our goal is to check up how much the hypothesis of time multidimensionality is not
contradictory in the region of microscopic phenomena. For this purpose we consider the
relativistic invariant quantization of electromagnetic and spinor ˇelds and the construction of
the respective S-matrix.

1. RELATIVISTIC INVARIANT PLANE WAVE DECOMPOSITION
IN SIX-DIMENSIONAL SPACE-TIME

The electromagnetic potential at a point x̂ = (x, η̂t), where η̂2 = 1, can be presented as a
six-dimensional Fourier integral

Â(x̂) =
∫

d6p δ(p̂2)Â(x̂, p̂) =
∫

d3τ δ(τ̂2 − 1)Âτ (x̂), (1)

where the bundle of waves along the time trajectory τ̂ is

Âτ (x̂) =
∫

d3p p−2Â(x̂, p̂) =
∫

d3p
[
â(p̂) eip̂x̂ + â∗(p̂) e−ip̂x̂

]
. (2)

The amplitude is â∗(p̂) = â(−p̂), as a consequence of the relation Â(x̂) = Â∗(x̂), and the
energy vector of every wave is directed along its time trajectory, p̂ = (p, pτ̂ ), p = |p|. The
scalar product is p̂x̂ = px− ptτ̂ η̂. The δ-function in Eq. (1) is due to the momentum-energy
conservation law and shows that the integration is performed only over a sphere with unit
radius.

In the one-time limit, Eq. (1) is an identity

Ak(x̂) = (1/2) [Aτ,k(x, t) + A−τ,k(x, t)] = Ak(x, t), (3)

k = 1, . . . , 4, τ = 1.

1In what follows the three-dimensional vectors in x- and t-subspaces will be denoted, respectively, by bold
symbols and by a hat, six-dimensional vectors will be marked by bold symbols with a hat. (In manuscripts it is
convenient to use the notations x̄, x̂ and ˆ̄x.) We suppose also that co- and contravariant vectors are distinguished
by the sign of their time components, e. g., (x̂)µ = (x,−ct̂)T

µ , (x̂)µ = (x, ct̂)Tµ . So, the scalar product

âb̂ = gµνaµbν = ab − âb̂ where the metric tensor gµν ≡ gµν has the diagonal elements (1, 1, 1,−1,−1,−1).

The ®six-dimensional nabla¯ ∇̂ = (∇,−∇̂) and ∇µ ≡ ∂/∂xµ. As a rule, we shall also suppose that the Latin and
Greek indices take values k = 1, . . . , 3, µ = 1, . . . , 6 and the constants � = c = 1.
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Similarly, the relativistic invariant plane wave decomposition of a spinor ˇeld is

ψ(x̂) =
∫

d6p δ(p̂2)ψ(x̂, p̂) =
∫

d3τ δ(τ̂2 − 1)ψτ (x̂), (4)

ψτ (x̂) =
4∑

s=1

∫
d3p

[
as(p̂)Us(p̂) eip̂x̂ + b+s (p̂)Vs(−p̂) e−ip̂x̂

]
(5)

with p̂ = (p, τ̂Ep), and Ep = (p2 +m2)1/2, p̂x̂ = px−Eptτ̂ η̂. The four eight-component
spinors Us and Vs are the linearly independent solutions of the multitime Dirac equations

(p̂γ̂ + m)Us(p̂) = 0, (p̂γ̂ + m)Vs(p̂) = 0 (6)

with the (8 × 8)-matrices γµ satisfying the commutation relation [γµ, γν ]+ = −2gµν . The
spinors have the normalization

Ūr(p̂)Us(p̂) = −V̄r(p̂)Vs(p̂) = (−1)r(m/Ep)δrs. (7)

Like Eq. (1), the decomposition (4) describes a bundle of plane waves with different time
trajectories τ̂ .

The six-dimensional potential Â(x̂) and the multitime solutions ψ(x̂) of Dirac equation
are described more comprehensively in [4, 15] and [8,13].

2. QUANTIZATION OF ELECTROMAGNETIC FIELD

A six-dimensional momentum-energy vector of electromagnetic ˇeld at a three-dimensional
time point t̂ = tη̂, where η̂ is again a unit time vector, is given by

Pµ =
∫

d3xT µ3+kηk =
∫

d3x

(
∂Aα

∂x3+k

∂Aα

∂xµ
− 1

2
gµ3+k

∂Aα

∂xβ

∂Aα

∂xβ

)
ηk =

= (2π)3
∫

d3τ d3τ ′ d3p d3p′ δ(τ̂2 − 1)δ(τ̂ ′2 − 1)p′µpτ̂ η̂×

×
[
â(p̂)â+(p̂′) e−i(p̂−p̂′)t̂ + â+(p̂)â(p̂′) ei(p̂−p̂′)t̂

]
, (8)

where p̂ = (p, τ̂ p); p̂′ = (p, τ̂ ′p), and we took into account that

p′µp̂η̂ − (1/2)p̂p̂′δµ3+kη
k = p′µpτ̂ η̂.

Let us replace now 4p(π)3/2 â → â and suppose that the new amplitudes satisfy the
commutation relations [

aµ(p̂), a+
ν (p̂′)

]
= gµνδ(p̂ − p̂′)ε(p̂), (9)

[aµ(p̂), aν(p̂′)] =
[
a+

µ (p̂), a+
ν (p̂′)

]
= 0, (10)

where the presence of gµν means that the operators of creation and absorption of the particles
with the polarizations µ > 3 switch the roles. (Like the customary one-time theory, such
a quantization assumes the indeˇnite metric in Hilbert space [16, 17].) The necessity of the
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staircase function ε(p̂) = ε(pτ1)ε(pτ2)ε(pτ3), where ε(pτk) = 1, if pτk � 0 and ε(pτk) = 0
for pτk < 0, is stipulated by the time irreversibility dt̂(t)/dt � 0 due to which the time
trajectories pass from the seventh into the ˇrst quadrant of time subspace.

If we take now into account the commutation relation and note that the exponents with
p̂ �= p̂′ in Eq. (8) give zeros1, then Eq. (8) can be reduced to the form

Pµ =
∫

d3τ δ(τ̂2 − 1)Pµ(τ̂ , η̂) =

= 2
∫

d3τ δ(τ̂2 − 1)τ̂ η̂
∫

d3p pµ

6∑
ν=1

nν(p̂)ε(p̂) + P0µ, (11)

where p̂ = (p),pτ̂ . The quantities nk(p̂) = a+
k (p̂)ak(p̂) and nk+3(p̂) = −â+

k+3(p̂)âk+3(p̂),
k � 3, are the numbers of photons with the momentum-energy p̂ε(p̂) and the polarization ν
moving along the time direction τ̂ . Due to the staircase functions ε(pk) all components of
particle energies p̂ have always positive values. The vacuum energy P̂0 is an inˇnite large
but also a positive quantity.

One should also note that n3 = n4 = 0 since the subsidiary Lorentz condition excludes
the ˇelds with the polarizations ν = 3, 4. In the one-time limit

6∑
k=1

∫
d3τ̂ δ(τ̂2 − 1) → (1/2)

3∑
k=1

∫
dτ̂

and Eq. (11) gets the same form as in the customary electrodynamics.
We can also see that P̂ does not depend on t; i. e., if we take into account all the

contributions of the ˇelds evolving along all crossing time trajectories at the point t̂, the
momentum-energy obeys, as in the one-time theory, the conservation law dPµ/dt = 0.

One should remember that the wave function in Hilbert space with indeˇnite metric norm
Ψ̄Ψ, where Ψ̄ = Ψ+η and η is the hermitian Pauli operator [16, 17], can have a negative
value. In contrast to the one-time theory where due to the Lorentz condition we can restrict
ourselves to the subspace with the positive norm, in the multitime case due to a creation of
quanta with the polarizations ν = 5, 6 we have to deal with the complete Hilbert space. As
in the case of multitime Dirac spinors considered in [12], one must distinguish between the
sign-indeˇnite norm Ψ̄Ψ and the positive probability Ψ+Ψ. The physical interpretation of Ψ̄
needs more detailed study in connection with calculations of concrete physical effects.

Using the commutation relations (9) and (10) deˇned above, one can obtain for a com-
mutator of electromagnetic potentials with the ˇxed time trajectories τ and τ ′

[Aτµ(x̂), Aτ ′ν(x̂′)] =

1For q̂ = p̂ − p̂′ �= 0
∫ π

0
â(p̂)â+(p̂′) eipt cos ϑ sin ϑdϑ ∼ 〈ââ+〉t−1 sin pt → 0,

where 〈ââ+〉 is the value of the product of the amplitudes at some intermediate value of ϑ and t → ∞, since the
time frame origin can be placed arbitrarily far in the past.
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= (1/2)(2π)−3gµν

∫
d3p ε(p̂)δ(τ̂ − τ̂ ′)p−1eip(x−x′)

[
e−ip̂(t̂−t̂′) − eip̂(t̂−t̂′)

]
=

= igµνε(τ̂)δ(τ̂ − τ̂ ′)D(x̂ − x̂′, τ̂), (12)

where we took into account that this expression is invariant under the replacement p → −p,
the time vector t̂ = η̂t, η̂2 = 1, and the function

D(x̂, τ̂) = −D(x̂,−τ̂) = −i(2π)−3

∫
d4p δ(p̂2)ε(p) eipx−iptτ̂ η̂ (13)

is a generalization of the well known PauliÄJordan function D(x).
The commutator of the potentials is

[Aµ(x̂), Aν(x̂′)] = 2igµν

∫
d3τ δ(τ̂2 − 1)ε(τ̂ )D(x̂ − x̂′, τ̂ ). (14)

In the general case, in contrast to the commutator (12) which vanishes outside the light
cone with the axis along the vector t̂− t̂′, the commutation bracket (14) is not zero, because
it includes the contributions of many intersecting light cones.

Analogously (repeating, for example, the reasoning presented in book [17]) one can calcu-
late the vacuum average 〈T (Aτµ(x̂)Aτ ′ν(x̂′))〉0 which is distinguished from the expressions
of the one-time theory by the additional factor δ(τ̂ − τ̂ ′)ε(τ̂ ), and the scalar time t must be
replaced by the product tτ̂ η̂:

〈T (Aτµ(x̂)Aτ ′ν(x̂′))〉0 = δ(τ̂ − τ̂ ′)ε(τ̂ )Dc
µν(x̂ − x̂′, τ̂ − τ̂ ′), (15)

Dc
µν(x̂, τ̂ ) = −i(2π)−4gµν

∫
d4p eipx−iptτ̂ η̂/(p2 − p̂2). (16)

The chronologization is performed with respect to the time t. Reducing to the one-time limit,
we get again the well known relations.

The vacuum average taking into account the creation and absorption of virtual quanta
along all time trajectories is obtained by the three-dimensional integration with the condition
|p̂| = p:

〈T (Aµ(x̂)Aν(x̂′))〉0 =
∫

d3p̂d3p̂′δ(|p̂| − p)〈T (Aτµ(x̂)Aτ ′ν(x̂′))〉0 =

= δ(τ̂ − τ̂ ′)ε(τ̂ )Dc
µν(x̂ − x̂′, τ̂). (17)

3. QUANTUM RELATIONS FOR SPINOR FIELDS

The momentum-energy vector and the electric charge for spinor ˇeld at a time point t̂ = tη̂
are

Pµ = −i

∫
d3xT µkηk = −(i/2)

∫
d3x

(
ψ̄(γ̂η̂)∇µψ −∇µψ̄(γ̂η̂)ψ

)
=

= (2π)3
4∑

k=1

∫
d3τ d3τ ′ d3p d3p′δ(τ̂2 − 1)δ(τ̂ ′2 − 1)(p̂η̂)µB

(+)
s (p̂, p̂′, t̂− t̂′), (18)
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Q =
∫

d 3xQkηk = q

∫
d 3x ψ̄(γ̂η̂)ψ =

= q(2π)3
4∑

k=1

∫
d3τ d3τ ′ d3p d3p′ δ(τ̂2 − 1)δ(τ̂ ′2 − 1)(p̂η̂)B(−)

s (p̂, p̂′, t̂− t̂′), (19)

where

B(±)
s (p̂, p̂′, t̂− t̂′) = (−1)s

[
a+

s (p̂)as(p̂′) ei(−p̂+p̂′)t̂ ± bs(p̂)b+s (p̂′) ei(p̂−p̂′)t̂
]
; (20)

q is the electron charge; ψ̄ = ψ+Γ; the matrix Γ = Γ+ = iγ4γ5γ6 [8, 13]; the energy-
momemtum vectors p̂ = (p, τ̂Ep), p̂′ = (p, τ̂ ′Ep), and summation includes all linearly
independent solutions of Eq. (6). We have also taken into account that, due to Eqs. (6)
and (7),

Ūs(p̂)γµUr(p̂) = −(2m)−1Ūs(p̂)(γνγµ + γµγν)pνUr(p̂) =

= m−1pµŪs(p̂)Ur(p̂) = (−1)s(m/Ep)pµδrs, (21)

V̄s(−p̂)γµVr(−p̂) = m−1pµV̄s(−p̂)Vr(−p̂) = −(−1)s(m/Ep)pµδrs. (22)

It is also evident that

Us(p̂)γ̂τ̂Vr(−p̂) = Ūs(p̂)γ̂τ̂Vr(−p̂) = Ūs(p̂)γ̂τ̂ V̄r(−p̂) = 0. (23)

If we replace now the quantities (2π)3/2(2p)1/2as → as, do a similar replacement for bs

and deˇne the commutation rules[
a+

s (p̂), ar(p̂′)
]
+

=
[
b+s (p̂), br(p̂′′)

]
+

= (−1)rδrsδ(p̂ − p̂′)ε(p̂), (24)

[as(p̂), ar(p̂′)]+ = [bs(p̂), br(p̂′)]+ = [as(p̂), br(p̂′)]+ =
[
a+

s (p̂), b+r (p̂′)
]
+

= 0, (25)

then we get

Pµ =
∫

d3τδ(τ̂2 − 1)Pµ(τ̂ ) =

= 2
4∑

k=1

(−1)s

∫
d3τ δ(τ2 − 1)(τ̂ η̂)

∫
d3p pµε(p̂)

[
n+

s (p̂) + n−
s (p̂)

]
+ P0µ, (26)

Q =
∫

d3τδ(τ̂2 − 1)τ̂ =

= 2q
4∑

s=1

(−1)s

∫
dτ δ(τ2 − 1)

∫
(τ̂ η̂)d3p ε(p̂)

[
n+

s (p̂) + n−
s (p̂)

]
+ Q0. (27)

From these expressions one must conclude that the products n+ = a+
s (p̂)as(p̂) and

n− = −b+s (p̂)bs(p̂) of the amplitudes with s = 1, 3, transforming in the one-time limit into
the customary solutions of Dirac equation [13], have the meaning of the numbers of particles
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and antiparticles moving along a time trajectory τ̂ = p̂/p. As in the case of electromagnetic
waves considered above, due to the step function ε(p̂) all particle energy components Eptτk

are positively deˇned. The vacuum energy P0 is also positive, and the summary vacuum
charge Q0 = 0.

In contrast to the one-time theory, in the multitime case the mass hyperboloid p̂2 = −m2

is connected; i. e., at energy Ei > m there is no gap between positive and negative energies,
and one can think that we cannot distinguish between the positive- and negative-frequency
ˇeld states, and quite free transitions of particles and antiparticles into each other are possible.
However, this is not the case since energy and time vectors are connected by the relation
Ê = Eτ̂ , and due to the condition of time irreversibility dτ̂/dt � 0 all energy components
must be positive. The positive- and negative-frequency waves exp (+ix̂p̂) and exp (−ix̂p̂)
are separated uniquely. From a geometrical viewpoint, all particle and antiparticle trajectories
must be placed inside the ˇrst octant of t-subspace ti � 0. Particle and antiparticle are always
separated by a gap ∆E � 2m and the creation of a particleÄantiparticle pair demands the
energy E � 2m1.

Using the integral expression (5) and the commutation rules (24) and (25), one can present
the spinor ˇeld anticommutator as

[
ψτ (x, τ̂ t), ψ̄τ ′(x′, τ̂ t′)

]
+

= (1/2)(2π)−3

∫
d3p ε(p̂)δ(τ̂ − τ̂ ′)×

×
[
eip̂(x̂−x̂′)

4∑
r=1

(−1)rUr(p̂)Ūr(p̂)+ e−ip̂(x̂−x̂′)
4∑

r=1

(−1)rVr(−p̂)V̄s(−p̂)

]
, (28)

where p̂ = τ̂Ep; p̂(x̂− x̂′) = Ep(t− t′).
Calculations analogous to the ones performed in the one-time theory (see the Appendix)

give

4∑
s=1

(−1)sUs(p̂)Ūs(p̂) = (m− γ̂p̂)/2Ep, (29)

4∑
s=1

(−1)sVs(−p̂)V̄s(−p̂) = −(m + γ̂p̂)/2Ep. (30)

So, the anticommutator[
ψτ (x, τ̂ t), ψ̄τ (x′, τ̂ t′)

]
+

= ε(τ̂ )δ(τ̂ − τ̂ ′)S(x̂ − x̂′, τ̂ ), (31)

where

S(x̂, τ̂ ) = −i(2π)−3(m− γ̂p̂)
∫

d4p δ(p̂2 −m2)ε(p) eipx−ipτ̂ η̂. (32)

1It is known from experiments that inside the space-time intervals accessible now the time regulation takes place.
However, it may happen that inside much smaller intervals such a regulation is violated and all time directions
become possible [18]. Then the sign of energy becomes indeˇnite and particle and antiparticle are undistinguished.
We do not consider such a case.
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This function differs essentially from the corresponding one-time function due to the
replacing of the Dirac 4 × 4 matrices by the 8 × 8 γ matrices of the multitime theory.

The anticommutator of spinor bundles is

[
ψ(x), ψ̄(x′)

]
+

=
∫

d3τ δ(τ̂2 − 1)ε(τ̂)S(x̂ − x̂′, τ̂). (33)

For the vacuum average we have

〈T (ψτ (x̂)ψ̄τ ′(x̂′))〉0 = iε(τ̂ )δ(τ̂ − τ̂ ′)Sc(x̂ − x̂′, τ̂), (34)

Sc(x̂, τ̂ ) = −i(2π)−4

∫
d4p (m− γ̂p̂) eipx−iptτ̂ η̂/(p̂2 + m2), (35)

where instead of the Dirac matrices the 8 × 8 matrices γµ are used again.

4. HAMILTONIAN AND MULTITIME S-MATRIX

In order to deduce a multitime generalization of Hamiltonian we, following [14], rewrite
the Dirac equation

(iγ̂∇̂ + qγ̂Â −m)Ψ = 0

in the form
(iΘd/dt + γ∇ + qγ̂Â−m)Ψ = 0. (36)

Here t is the proper time on the trajectoty t̂ = tτ̂ .
One can write now

(id/dt + H)Ψ = 0, (37)

where
H ≡ H0 + Hint = Θγ∇ + Θγ̂Â − Θm

is the sought Hamiltonian. The ˇelds Â(x̂) and ψ(x̂) are bundles of waves with energy
vectors which in the general case are directed not only along the considered trajectory t̂.

In the interaction representation we get the formal solution for Eq. (37)

Φ(t̂(t)) = S
(
t̂(t), t̂(t0)

)
Φ(t̂(t0)), (38)

with the scattering matrix

S
(
t̂(t), t̂(t0)

)
=

∫ t

t0

dtd3xHint(x̂) =

= T exp
(
−i

∫ t

t0

dtHint(t)
)

= T exp
(
−iq

∫
d4xHint(x̂)

)
(39)

and the chronologization of the proper time of the trajectory t̂.
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CONCLUSION

Of many variants of the multitime theory considered in the literature (see the bibliography
in [8, 10]) the variant proposed by E. A.B. Cole [3] is the best. It does not encounter
now theoretical or experimental contradictions in the region of macroscopic phenomena and
allows for the relativistic invariant quantization. Due to the relation Ê = Eτ̂ , connecting in
the multitime theory time vectors and energy, the demand Ê � 0 is equivalent to the time
irreversibility condition dt̂/dt > 0.

The expression for scattering matrix (39) together with the wave decompositions (1)Ä(5)
allows one to calculate the inquence of hidden time dimensions on the experimentally observed
quantum processes. However, one should note that the Hamiltonian Hint is non-Hermitian,
which reqects the possibility of changing the trajectory and energy. This peculiarity of the
multitime S-matrix needs closer examination [14].

The integration over x-subspace and over the proper time t provides the fulˇllment of the
momentum-energy conservation law δ(p̂1 + p̂2 + p̂3) for created and absorbed particles at
every interaction.

APPENDIX

Analogously to the one-time theory (see [17]) let us consider the function

G = (γ̂p̂ + m)−1 = (m− γ̂p̂)/(p̂2 + m2) = (m− γ̂p̂)/(Ep
2 − λp

2), (40)

satisfying the equation
(γ̂p̂ + m)G = 1, (41)

where λp �= Ep ≡ (p2 + m2)1/2, since Eq. (41) is distinguished from the Dirac equation.
The function G can be presented as a series

G =
4∑

r=1

[Ur(p̂)c1rUr + Vr(p̂)c2r] , (42)

where Ur and Vr are the solutions for the Dirac equations (6). Inserting this series into
Eq. (41) and taking into account the Dirac equations

(γp + m)Ur(p̂) = EpθUr(p̂), (γp + m)Vr(p̂) = EpθVr(p̂) (43)

with the matrix θ = θ−1 = γ̂τ̂ and matrix coefˇcients cir, we get

4∑
r=1

[θ(Ep − λp)Ur(p̂)c1r − θ(Ep + λp)Vr(p̂)c2r] = 1. (44)

Multiplying now this relation from the left ˇrstly by Ūs(p̂) and then by V̄s(p̂), we ˇnd
the coefˇcients cir:

c1r = (−1)rŪr(p̂)(Ep + λp)/(Ep
2 − λp

2), (45)

c2r = −(−1)rV̄r(p̂)(Ep − λp)/(Ep
2 − λp

2). (46)
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The series (42) can be written now as

G = (Ep
2 − λp

2)−1
4∑

s=1

(−1)s
[
Us(p̂)Ūs(p̂)(Ep + λp) − Vs(p̂)V̄s(p̂)(Ep − λp)

]
. (47)

Comparing this expression with Eq. (40) by λp → ±Ep, we get ˇnally the relation (29)
and then (30) by replacing p̂ → −p̂.
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