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We derive a quantum cloning machine that maximizes the entanglement of formation of the two
copies of any maximally entangled input state, while preserving the separability of all unentangled input
states. In addition, it is proven to optimally duplicate the entanglement of formation of all isotropic
input states. For large d, the cloning machine behaves classically and outperforms a local entanglement
cloner, studied for comparison.

ŒÒ · ¸¸Î¨É ²¨ ±¢ ´Éμ¢ÊÕ ±μ¶¨·ÊÕÐÊÕ ³ Ï¨´Ê, ±μÉμ· Ö μ¡¥¸¶¥Î¨¢ ¥É ³ ±¸¨³ ²Ó´μ¥ ¶¥·¥¶Ê-
ÉÒ¢ ´¨¥ (entanglement of formation) ¢ μ¡e¨Ì ±μ¶¨ÖÌ ³ ±¸¨³ ²Ó´μ ¶¥·¥¶ÊÉ ´´μ£μ ¨¸Ìμ¤´μ£μ ±¢ ´Éμ-
¢μ£μ ¸μ¸ÉμÖ´¨Ö, ¶·¨ ÔÉμ³ ±μ¶¨¨ ´¥¶¥·¥¶ÊÉ ´´ÒÌ ¸μ¸ÉμÖ´¨° ¸μÌ· ´ÖÕÉ¸Ö ´¥¶¥·¥¶ÊÉ ´´Ò³¨. Š·μ³¥
Éμ£μ, ³Ò ¤μ± § ²¨, ÎÉμ ¶¥·¥¶ÊÉ ´´μ¸ÉÓ ¢¸¥Ì ¨§μÉ·μ¶´ÒÌ ¸μ¸ÉμÖ´¨° ±μ¶¨·Ê¥É¸Ö ´ Ï¥° ±μ¶¨·ÊÕÐ¥°
³ Ï¨´μ° μ¶É¨³ ²Ó´Ò³ μ¡· §μ³. 	 Ï  ±μ¶¨·ÊÕÐ Ö ³ Ï¨´  ¶·¥¢μ¸Ìμ¤¨É ²μ± ²Ó´ÊÕ ±μ¶¨·ÊÕÐÊÕ
³ Ï¨´Ê, ±μÉμ·ÊÕ ³Ò ¨§ÊÎ ²¨ ¤²Ö ¸· ¢´¥´¨Ö,   ¶·¨ ¡μ²ÓÏμ° · §³¥·´μ¸É¨ ¶·μ¸É· ´¸É¢  ƒ¨²Ó¡¥·É 
μ´  ËÊ´±Í¨μ´¨·Ê¥É ± ± ±² ¸¸¨Î¥¸±¨° ¶¥·¥±²ÕÎ É¥²Ó.

INTRODUCTION

Quantum entanglement is an important resource for quantum communication, quantum
computation, and quantum cryptography. Therefore, it is important to know to what extent
this resource is reproduced when entangled states are duplicated. A perfect cloning of arbitrary
quantum states is forbidden by the no-cloning theorem [2]. However, an imperfect cloning
is possible and various quantum cloning machines (QCM), which duplicate quantum states
with the highest ˇdelity, have been proposed following the seminal paper of Buzek and
Hillery [3]. However, the question of whether quantum entanglement can be cloned or not has
been raised only recently, and a QCM was proposed that optimally (but imperfectly) clones
the entanglement of entangled pairs of two-dimensional systems (qubits) while preserving
separability [4]. Separability preservation is an important feature of QCM following an
entanglement no-cloning principle that was formulated in [4]: ®if a quantum operation can be
found that perfectly duplicates the entanglement of all maximally entangled (ME) states, then
it does not necessarily preserve separability¯. It means that such a ®perfect¯ QCM produces
entangled clones of separable states, i.e. creates undesired entanglement.

In this conference paper, we report on the extension of these results to d-dimensional
quantum systems, presented in the paper [1]. In Sec. 1, we deˇne a (symmetric) cloning
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transformation acting on d × d-dimensional quantum states and determine the parameters of
this transformation that maximize the amount of entanglement of the two clones of any ME
state. In Sec. 2, we compare our optimal d × d entanglement cloner to a real and universal
cloning machine, as well as to a ®local¯ cloning transformation that is achieved by applying
a separate universal cloning machine to each component of the bipartite system. In Sec. 3, we
analyze the entanglement of the clones in terms of ˇdelity and show that this actually leads to
maximizing the entanglement of formation of the clones provided that we restrict ourselves to
isotropic input states (including ME states) and cloning machines that are covariant under local
unitaries. In Sec. 4 we check that our optimized cloning transformation produces separable
clones in the case of unentangled input states. Finally, we present our conclusions.

1. OPTIMAL d × d ENTANGLEMENT CLONER

Following the ideas presented in [4], we seek for a cloning transformation that (i) preserves
separability, and (ii) maximizes the entanglement of the two clones resulting from any ME
input state. We shall characterize a cloner by considering the transformation of an input that
is maximally entangled with a reference system (see [5]). Using the isomorphism between
completely positive (CP) maps S and positive semideˇnite operators S � 0 on the tensor
product of input and output Hilbert spaces Hin ⊗ Hout [6], we shall represent our cloning
transformation by a quantum state S.

Let us illustrate this isomorphism following Ref. [7]. Consider ˇrst ME state on Hin ⊗
Hout = H⊗2

|Φ+〉 =
1√
d

d−1∑
j=0

|j〉1|j〉2, (1)

where d = dim (Hin). Applying the map S to subsystem 2 one obtains the resulting (generally
mixed) quantum state Å linear positive operator

S = I1 ⊗ S2(d|Φ+〉〈Φ+|) (2)

that is isomorphic to S (see Fig. 1). A trace preserving map satisˇes

Trout[S] = 11in. (3)

The CP map ρout = S(ρin) can be expressed in terms of S as follows:

ρout = Trin[ρT
in ⊗ 11outS], (4)

where T denotes the transposition in the Schmidt basis of |Φ+〉. We shall call ®reference¯
the part of state S, which corresponds to Hin and denotes this Hilbert space as HR.

For the 1 → 2 cloning transformation ˇrst we observe that the output Hilbert space Hout

must include at least a tensor product Ha ⊗Hb of two clones ®a¯ and ®b¯. In addition, one
needs to introduce an ancilla that we shall denote as A. Therefore, the total output state must
be endowed with the following tensor product structure Hout = Ha ⊗Hb ⊗HA. The ancilla
is necessary in order to purify the state S into a pure state |S〉 such that S = TrA[|S〉〈S|] [5].
Together with the reference component the overall state |S〉 belongs to the product space
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Fig. 1. Isomorphism between a CP map S and a linear positive operator S

Fig. 2. Cloning transformation as a CP map S or as a state S

HR ⊗Ha ⊗Hb ⊗HA (see Fig. 2). Thus, following the arguments of Refs. [5] and [7], we
shall construct the state |S〉 as a linear combination of products of four components, namely,
the reference system, which we denote as R, two blank systems for future clones denoted as
a and b and an ancilla denoted by A. As we are interested in cloning entanglement, all four
components are now d2-dimensional bipartite states. The general form for such a cloning
transformation is deˇned in the computational basis {|i〉} (where |i〉 = |iA〉|iB〉) by the state

|S〉R,a,b,A =
∑

i,j,k,l

sijkl |i〉R |j〉a |k〉b |l〉A. (5)

All the summations here are d2-dimensional since each index i, j, k, or l actually represents
a couple of indices running each from 0 to d − 1, e.g., i = {iA, iB}, with iA, iB ∈ [0; d− 1].
Of course, the index A stands for Alice's component of the bipartite states, while B stands
for Bob's component.

As mentioned above, the joint state of the two clones and the ancilla is obtained by
performing an appropriate projection on the reference system. Thus, for an input state
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|Φ〉 =
∑

i

ni|i〉, the result of the cloning transformation is of the form

|χ〉 = R〈Φ∗|S〉R,a,b,A =
∑

i,j,k,l

sijkl ni |j〉a |k〉b |l〉A. (6)

Then, the state of any of the clones is further obtained by tracing out the ancilla and the other
clone. This is a kind of global transformation that clones jointly the components A and B of
the entangled initial state resulting in two bipartite entangled states as shown in Fig. 3, a.

Fig. 3. a) Optimal d × d entanglement cloner; b) ®local¯ entanglement cloner, as deˇned in Sec. 2.

Here, A and B stand for Alice's and Bob's part of the bipartite state, while a and b stand for two

clones. Entanglement is indicated by double loops

Next, we impose the following covariance condition on our cloning machine. Since we
know that any local unitary operation acting on the A and B components of a bipartite state
preserves its entanglement, we require that any of such transformations acts similarly on the
clones. This condition amounts to imposing

|S〉R,a,b,A = U∗ ⊗ U ⊗ U ⊗ U∗|S〉R,a,b,A, (7)

where U is the product of any two unitary transformations acting separately on each d-
dimensional component of the bipartite state, that is

U = UA ⊗ UB, (8)

where the indices A and B denote Alice's and Bob's components. Deˇned in this way, the
operator U possesses a SU(d)⊗SU(d) symmetry. The covariance property implies that sijkl

in (1) satisˇes the transformation:

sijkl = U∗
ii′Ujj′Ukk′U∗

ll′si′j′k′l′ , (9)

where U∗ denotes the matrix element-wise complex conjugate of U with respect to the
computational basis. (Here, the summation over all repeated indices is implicit.) If the
transformation with respect to Alice's component is real, i.e. a rotation under SO(d), then
Eq. (5) implies that sijkl is a rank-4 isotropic tensor, i.e. invariant under all possible real
rotations of the reference frame. There are only three independent components of such



Cloning the Entanglement of a Pair of d-Dimensional Quantum Systems 199

an isotropic tensor (see [8]): δiAjAδkAlA , δiAkAδjAlA and δiAlAδjAkA . Furthermore, if the
transformation is complex, i.e. a rotation under SU(d), then the term δiAlAδjAkA must
be excluded since, for example, it does not fulˇl Eq. (9) with the phase transformation
Uij = eiθ δiAjAδiBjB for any angle θ. The same reasoning holds for Bob's component. Then,
combining all possible terms compatible with (9), we obtain the general form of the resulting
tensor as

sijkl = AδiAjAδkAlAδiBjB δkBlB + B δiAjAδkAlAδiBkBδjB lB+
+ C δiAkAδjAlAδiBkBδjB lB + D δiAkAδjAlAδiBjB δkBlB . (10)

For a symmetric cloner, the output state must be invariant under the interchange of the
two clones, i.e. under permutations (jA, jB) ↔ (kA, kB). This implies that A = C and
B = D, so we are left with only two complex parameters A and B to be determined.

The covariance condition (7) guarantees that our QCM transforms all states which are
equivalent to local unitaries (which have therefore the same entanglement) into equally en-
tangled clones. In particular, the clones of all ME states will be equally entangled. Then, a
cloner that is optimized on a particular ME input state will be optimal for all ME states. We
choose as an initial d × d ME state

|Φ〉 =
d−1∑

iA,iB=0

niAiB |iA〉|iB〉, (11)

where niA,iB = δiAiB/
√

d. As we shall show later, we can maximize the entanglement of the
clones simply by optimizing our QCM in terms of the ˇdelity of the clones,

F = 〈Φ|ρa|Φ〉 , (12)

where
ρa = TrA,b [|χ〉〈χ|] (13)

is the state of clone a. For the ME state (11), this ˇdelity is found to be

F = (d2 + 3)|A|2 + 4|B|2 +
4
d
(d2 + 1)Re (A∗B). (14)

Taking into account the normalization condition for the joint output state |χ〉,

2(d2 + 1)
(
|A|2 + |B|2

)
+ 8d Re (A∗B) = 1, (15)

we can maximize the ˇdelity, Eq. (14), as follows. Introducing new notations{
2(d2 + 1) = α + β,
4d = α − β

(16)

we rewrite Eq. (15) in the form

α|A − B|2 + β|A + B|2 = 1. (17)
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Then denoting {
A − B = C,
A + B = D

(18)

and taking into account Eq. (16) we rewrite Eq. (14) as

F =
1
4

(
α|C|2d1 + β|D|2d2 + 2|C||D|

√
αβ cos (ϕD − ϕC)

)
, (19)

where ϕC , ϕD are the arguments of the complex variables C and D, and

d1 = 1 − 2(d − 2)
d(d − 1)

, d2 = 1 +
2(d + 2)
d(d + 1)

. (20)

Observing that in Eq. (19) all terms except for the cosine factor are positive and the argument
of the cosine is independent of all other parameters, we conclude that F is maximized when
cos (ϕD − ϕC) = 1. Then, with the help of Eqs. (17) and (18) we can denote

cos θ = α1/2C2, sin θ = β1/2D2 (21)

and from Eq. (19) we obtain F optimized in terms of the arguments ϕC and ϕD as

F =
1
4

(
d1 cos2 θ + d2 sin2 θ + 2 sin θ cos θ

)
. (22)

After some algebra, we rewrite Eq. (22) in the form

F =
1
4

(
d1 + d2

2
+ r cos (2θ − Δ)

)
, (23)

where

r =

√
1 +

(
d1 − d2

2

)2

, sinΔ =
1
r
. (24)

Again, observing that θ in Eq. (23) is independent of d1 and d2, we conclude that the
maximum of F is achieved when cos (2θ − Δ) = 1, which yields

F =
1
4

⎛
⎝d2 + 1

d2 − 1
+

√
1 +

4
d2

(
d2 − 2
d2 − 1

)2
⎞
⎠ . (25)

Note that, for d = 2, this result coincides with the maximal ˇdelity of the entanglement cloner
for two qubits obtained in [4], namely

F =
5 +

√
13

12
≈ 0.7171. (26)

The parameters of the tensor sijkl (10) maximizing F in d dimensions are found to be

A =
d
√

1 + Y (d) −
√

1 − Y (d)
2(d2 − 1)

, (27)

B = −d
√

1 − Y (d) +
√

1 + Y (d)
2(d2 − 1)

, (28)
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where

Y (d) =
(

1 − (d2 − 2)2

d2(d2 − 1)2 + 4(d2 − 2)2

)1/2

. (29)

2. COMPARISON WITH OTHER CLONERS

We compare the ˇdelity achieved by our optimal d× d-dimensional entanglement cloner,
Eq. (25), with that of the universal cloner [5]

Fu =
1
2

+
1

d2 + 1
, (30)

as well as that of the optimal real cloner [9]

Fr =
1
2

+
√

d4 + 4d2 + 20 − d2 + 2
4(d2 + 2)

. (31)

In order to make this comparison consistent, we have obtained formulae (30) and (31) by
replacing the argument d by d2 in the original formulae. This is done because, in our
consideration, the dimension d stands for the dimension of each component of the bipartite
input state, so that the total dimension of our input state is d2.

In Table, we compare the ˇdelity F of our entanglement cloner with Fu and Fr, for
several values of the dimension d. Our cloner performs better than the universal cloner in d2

dimensions for all d, which is obviously due to the fact that the ME states span only a subset of
the entire set of d2-dimensional states. In contrast, the real d2-dimensional cloners outperform
our cloners, except if d = 2 where they coincide [4]. This can be interpreted by noting that
the set of d2-dimensional real states is generated by SO(d2), with (d2(d2 + 1)/2) − 1 real
degrees of freedom, while the set of ME states is generated by SU(d)×SU(d), with (d2−1)2

real degrees of freedom. For d = 2 they coincide, so that our cloner provides the same ˇdelity
as that of the real cloner in dimension 4, namely Eq. (26). This is related to the fact that the
set of ME 2-qubit states is isomorphic to the set of 4-dimensional real states [4]. For d > 2
the set of ME states is in some sense ®larger¯ than the set of real states, so that the achievable
ˇdelity of the entanglement cloner is lower. The ˇdelity of our cloner drops faster than that of
the real cloner with increasing d, but always remains higher than the ˇdelity of the universal
cloner. As expected, in the limit d → ∞, all three ˇdelities tend to the asymptotic value 1/2.
In this limit, all quantum cloners can be interpreted simply as a classical transformation that
maps the original state to one of the clones, chosen at random, the other clone being prepared
in a maximally mixed state.

Interestingly, we may also compare Eq. (25) to the ˇdelity of a ®local cloner¯ obtained by
applying a cloner separately to Alice's and Bob's components (see Fig. 3, b). Since the state
of Alice's or Bob's subsystem is maximally mixed (hence non-polarized) when the bipartite
state is ME, it is natural to use a universal d-dimensional cloner. We may observe that if
we consider a cloning transformation that performs such a local universal cloning, then it is
represented by a joint state of the same type as Eq. (5), see [5]. The only difference is that in
the expression (10) for the tensor sijkl all coefˇcients must be equal, i.e. A = B = C = D.
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Optimal ˇdelity F of the d× d entanglement cloner as compared to the ˇdelity of the real cloner Fr

and universal cloner Fu, both in d2 dimensions, to the ˇdelity of the d × d ®local¯ cloner Floc, and
to the ˇdelity of a ®local¯ cloner ®improved¯ by classical communication FLOCC. The ˇdelities are
shown in decreasing order

d × d Fr F Fu FLOCC Floc

2 × 2 0.7171 0.7171 0.7000 0.625 0.5833
3 × 3 0.6069 0.6019 0.6000 0.4583
4 × 4 0.5617 0.5592 0.5588 0.4000
5 × 5 0.5398 0.5386 0.5385 0.3667
6 × 6 0.5277 0.5271 0.5270 0.3452

Then the normalization condition (15) gives immediately A = 1/(2(d + 1)). The substitution
of this expression into Eq. (14) results in the ˇdelity for the local cloner:

Floc =
1
4

+
d + 2

2d(d + 1)
. (32)

This ˇdelity is compared in Table with that of the other cloners. It appears that cloning
Alice's and Bob's parts locally leads to a much lower ˇdelity. Note that for d = 2, the
value of the ˇdelity Floc in Table coincides with the value 7/12 obtained in [4]. In the limit
d → ∞, this ˇdelity tends to 1/4, which can be easily understood as follows. To contribute
to the ˇdelity, both cloners indeed need to map Alice's and Bob's components of the original
state onto the right clone, which only happens with probability (1/2)2 = 1/4. An interesting
observation made in Ref. [10] is that classical communication can improve local cloners. The
result for d = 2 presented in Table shows indeed the increased value of FLOCC compared to
the ˇdelity Floc of the local universal cloner. This value, however, is lower than the result
for all considered non-local cloners.

3. ENTANGLEMENT OF FORMATION

In order to investigate the entanglement properties of our cloning transformation, we shall
use as an entanglement measure for the clones the entanglement of formation [11], which
was computed for several classes of states that are invariant under some groups of local
symmetries [12]. In particular, we shall be interested in the class of states that are invariant
under the transformations U ⊗U∗ for all U ∈ SU(d), called isotropic states in [12,13]. These
states may be written in a general form as [14]

ρ =
1 − F

d2 − 1
(11 − |Φ〉〈Φ|) + F |Φ〉〈Φ|, (33)

where 11 is the identity and |Φ〉 is given by Eq. (11). Due to the covariance condition (7), our
QCM transforms U ⊗U∗ invariant states into the states that are also invariant under U ⊗U∗.
We can check that, by cloning the particular ME state |Φ〉, which is U ⊗ U∗ invariant, we
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obtain a clone of the form

ρa =
(
(d2 + 2)|A|2 + 2|B|2 + 4d Re (A∗B)

)
|Φ〉〈Φ|+

+
(
|A|2 + 2|B|2 +

4
d

Re(A∗B)
)

11, (34)

which is indeed an isotropic state and is consistent with Eq. (14). Hence, as a consequence
of our covariance condition, all ME states, which can be obtained from |Φ〉 by applying
local unitaries, are cloned onto isotropic states. For this class of states, the entanglement of
formation is known for arbitrary dimensions [12,14]

EF (ρ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, F � 1
d
,

R1,d−1(F ), F ∈
[
1
d
,
4(d − 1)

d2

]
,

d log2(d − 1)
d − 2

(F − 1) + log2 d, F ∈
[
4(d − 1)

d2
, 1

]
,

(35)

where

R1,d−1(F ) = H2(γ(F )) + [1 − γ(F )] log2(d − 1), (36)

γ(F ) =
1
d

[√
F +

√
(d − 1)(1 − F )

]2

, (37)

H2(p) = −p log2(p) − (1 − p) log2(1 − p). (38)

As shown in Fig. 4, the entanglement of formation EF (ρ) is a monotonically increasing
function of the ˇdelity F for isotropic states in any dimension d. Therefore, by optimizing
our QCM in terms of ˇdelity we maximize, at the same time, the entanglement of the clones
measured by their entanglement of formation. The circles in Fig. 4 correspond to the maximal
ˇdelity F that is achieved by our entanglement cloner, Eq. (25). They show as well the
corresponding entanglement of formation in each dimension. The crosses mark the crossover
between the expression of the ˇdelity corresponding to the second and the third lines of
Eq. (35). One notes that only for d � 7 there are values of the ˇdelity for which the
entanglement of formation has to be evaluated according to the third line of Eq. (35).

In order to visualize how the entanglement itself is cloned, we plot in Fig. 5 the entan-
glement of formation EF of the clones as a function of the entanglement of formation of
the input ME state Ein, which is simply the von Neumann entropy of the reduced density
matrix Ein = log2 d. We note that the entanglement of the clones is always less than one
half of the entanglement of the input state, while it asymptotically approaches this value for
large d. The apparent ®discontinuity¯ (if one can say so for a discrete graph) corresponds
to d = 7, i.e. the crossover between the second and the third lines of Eq. (35) when calcu-
lating the entropy of formation. In the limit of d → ∞, the third line of Eq. (35) tends to
EF = F log2 d = F Ein. Since the cloner can be viewed in this limit, as a classical random
distribution process associated with a ˇdelity F = 1/2, then the entanglement of each clone
tends to one half of the entanglement of the initial state EF → Ein/2.
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Fig. 4. Entanglement of formation EF of the clone of a maximally-entangled input state versus the
ˇdelity F of the clone for various dimensions d = 2−20 (the lowest curve corresponds to d = 2, while

the highest curve corresponds to d = 20). The circles show the maximum achievable ˇdelity and the
corresponding entanglement of formation. The crosses mark the crossover between the expression of

the ˇdelity corresponding to the second and the third lines of Eq. (35)

Fig. 5. Entanglement of formation EF of the clones of a maximally-entangled state obtained by the

optimal (non-local) cloner (◦) and the local cloner (+) versus the entanglement of the input state Ein

for various dimensions d = 2−200. The apparent ®discontinuity¯ in both curves is due to the crossover

from the second to the third lines of Eq. (35) for d � 7 (optimal cloner) and d � 13 (local cloner).

Solid lines represent the asymptotics of EF for large d in both cases
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In Fig. 5, we also plot the entanglement of formation resulting from the ®local¯ cloner
discussed above. Recall that this cloner differs from our optimal (non-local) entanglement
cloner only by setting A = B. Therefore, it is also covariant, satisfying Eq. (7), and all our
arguments about the entanglement of formation of the clones are applicable to this cloner as
well. Thus, using the ˇdelity of the clones (32), we may plot the entanglement of formation of
the clones. We see that the local cloner leads to a lower entanglement of formation, and even
the asymptotics of EF for large d is no more than one fourth the entanglement of the input
state. The reason is that in the limit of large d, the classical random distribution only succeeds
with probability 1/2 independently for Alice's and Bob's components, so the ˇdelity is 1/4.
Hence, EF → Ein/4. These observations conˇrm that by increasing the dimensionality, we
make the system behavior look more and more classical.

4. SEPARABILITY CONSERVATION

The last point to check is that our cloner does not create entanglement by itself, that is, it
clones separable states into separable states. First, an important observation is that our cloner
is such that the input-to-single-clone transformation is a positive partial transpose (PPT) map.
Using Eqs. (5) and (10), and tracing the joint state |S〉R,a,b,A over the ancilla A and one of
the clones, say b, we arrive at the following expression for the state of the reference and the
other clone

SR,a = |A|2(11A ⊗ 11B)R,a+

+ d2
(
(d2 + 2)|A|2 + 2|B|2 + 4d Re (A∗B)

)
(|φ〉A〈φ|A ⊗ |φ〉B〈φ|B)R,a+

+ d
(
d|B|2 + 2 Re (A∗B)

)
(|φ〉A〈φ|A ⊗ 11B + 11A ⊗ |φ〉B〈φ|B)R,a, (39)

where 11A is the identity operator in the joint space of Alice's component of the reference

R and clone a, while |φ〉A = d−1/2

d−1∑
i=0

|i〉RA |i〉aA is an ME state in the same space. (The

same notations are used for Bob's analog quantities 11B and |φ〉B .) The cloning map is thus
PPT since (SR,a)TB � 0, where TB stands for the partial transposition with respect to Bob's
components of the reference R and clone a. This PPT property ensures that the cloning of
any isotropic state cannot increase its ˇdelity, hence its entanglement of formation [15]. In
particular, all separable isotropic states are necessarily transformed into separable clones.

In order to generalize this separability conservation property to all separable input states
outside the restricted class of isotropic states, we consider the cloning of a product state
ρA ⊗ ρB . By tracing (ρA ⊗ ρB)T SR,a over the reference R, we obtain for the ˇrst clone a
state of the form

ρa = |A|2(11A ⊗ 11B)a +
(
(d2 + 2)|A|2 + 2|B|2 + 4d Re(A∗B)

)
(ρA ⊗ ρB)a+

+
(
d|B|2 + 2 Re(A∗B)

)
(ρA ⊗ 11B + 11A ⊗ ρB)a , (40)

where 11A and 11B are identities in Alice's and Bob's subspaces of clone a, respectively. Since
all terms in (40) are product states and all coefˇcients are positive semi-deˇnite for all d,
we verify that ρa is separable. By linearity of the trace, this result also holds for any linear
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combination
∑

i

piρ
A
i ⊗ ρB

i with pi � 0 and
∑

i

pi = 1, that is, for a generic separable state.

Thus, we can conclude that our entanglement cloner transforms all initially separable states
into separable clones.

CONCLUSION

In conclusion, we have constructed an optimal (symmetric) entanglement cloner, which
is universal over the set of d × d ME states. On the one hand, all separable input states are
cloned by this cloner into separable states. On the other hand, the entanglement of the clones
of ME input states is maximum. In addition, the entanglement of isotropic states cannot be
increased by the cloner (and we conjecture that this property holds in general for any input
state).

The optimization of the parameters of our QCM was performed by maximizing the ˇdelity
of the clones, but the monotonic behavior of the entanglement of formation as a function of the
ˇdelity for isotropic states guarantees that such an optimization maximizes the entanglement
of the clones at the same time. We expect that entanglement is cloned ®monotonically¯ also
for non-isotropic states, that is, higher entangled states result in higher entangled clones, and
therefore the ME input states are those which generate the clones with the maximum achievable
entanglement. If this very natural assumption is right, then, based on our result, one can state
that our cloner optimally duplicates the entanglement of any pair of d-dimensional quantum
system. Moreover, the maximal entanglement attainable by cloning is always below one half
of the entanglement of the input state and saturates this value in the limit of large dimension
d. This is consistent with the idea that, since our QCM transforms separable states into
separable clones, no additional entanglement is produced by cloning, so we can only split the
entanglement of the input state between the two clones. This explains as well the asymptotic
value of one fourth the initial entanglement for the local cloner at the limit of large d. It is
natural to expect that all these conclusions remain valid for asymmetric entanglement cloners
as well.
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