
�¨¸Ó³ ¢ �—�Ÿ. 2007. ’. 4, º2(138). ‘. 225Ä230

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ”ˆ‡ˆŠˆ

A C# PACKAGE FOR ASSEMBLING QUANTUM
CIRCUITS AND GENERATING ASSOCIATED

POLYNOMIAL SETS
V. P. Gerdt1, V. M. Severyanov2

Joint Institute for Nuclear Research, Dubna

Recently it has been shown that elements of the unitary matrix determined by a quantum circuit
can be computed by counting the number of common roots in the ˇnite ˇeld Z2 for a certain set of
multivariate polynomials over Z2. In this paper we present a C# package that allows a user to assemble
a quantum circuit and to generate the multivariate polynomial set associated with the circuit. The
generated polynomial system can further be converted to the canonical triangular involutive basis form
which is appropriate for counting the number of common roots of the polynomials.

	¥¤ ¢´μ ¡Ò²μ ¶μ± § ´μ, ÎÉμ Ô²¥³¥´ÉÒ Ê´¨É ·´μ° ³ É·¨ÍÒ, μ¶·¥¤¥²Ö¥³μ° ±¢ ´Éμ¢μ° ¸Ì¥³μ°,
³μ£ÊÉ ¡ÒÉÓ ¢ÒÎ¨¸²¥´Ò ¶ÊÉ¥³ ¶μ¤¸Î¥É Î¨¸² μ¡Ð¨Ì ±μ·´¥° ¢ ±μ´¥Î´μ³ ¶μ²¥ Z2 ¤²Ö ´¥±μÉμ·μ°
¸¨¸É¥³Ò ¶μ²¨´μ³μ¢ μÉ ³´μ£¨Ì ¶¥·¥³¥´´ÒÌ ´ ¤ Z2. ‚ ¤ ´´μ° ¸É ÉÓ¥ ³Ò ¶·¥¤¸É ¢²Ö¥³ ¶·μ£· ³³´Ò°
¶ ±¥É, ´ ¶¨¸ ´´Ò° ´ Ö§Ò±¥ C#, ±μÉμ·Ò° ¶μ§¢μ²Ö¥É ¶μ²Ó§μ¢ É¥²Õ ±μ³¶μ´μ¢ ÉÓ ±¢ ´Éμ¢ÊÕ ¸Ì¥³Ê ¨
¸É·μ¨ÉÓ ¸¨¸É¥³Ê ¶μ²¨´μ³μ¢ μÉ ³´μ£¨Ì ¶¥·¥³¥´´ÒÌ, ¸¸μÍ¨¨·μ¢ ´´ÊÕ ¸ ÔÉμ° ¸Ì¥³μ°. ‚ ¤ ²Ó´¥°Ï¥³
¶μ·μ¦¤¥´´ Ö ¸¨¸É¥³ ¶μ²¨´μ³μ¢ ³μ¦¥É ¡ÒÉÓ ¶·¥μ¡· §μ¢ ´ ± ± ´μ´¨Î¥¸±μ³Ê É·¥Ê£μ²Ó´μ³Ê ¢¨¤Ê ¸
¶μ³μÐÓÕ ¨´¢μ²ÕÉ¨¢´ÒÌ ¡ §¨¸μ¢, Ê¤μ¡´μ³Ê ¤²Ö ¶μ¤¸Î¥É Î¨¸² μ¡Ð¨Ì ±μ·´¥° ¶μ²¨´μ³μ¢.

INTRODUCTION

In [1] it was shown that elements of the unitary matrix determined by a quantum circuit can
be computed by counting the number of common roots in the ˇnite ˇeld Z2 for a certain set
of multivariate polynomials over Z2. Given a quantum circuit, the polynomial set is uniquely
constructed. In this talk we present a C# package called QuPol (Quantum Polynomials) that
allows a user to assemble a quantum circuit and to generate the multivariate polynomial set
associated with the circuit.

The generated polynomial system can further be converted into the canonical Gréobner
basis form for the lexicographical monomial order. Gréobner bases form the most universal
algorithmic tool of modern computer algebra to investigate and to solve the systems of
polynomial equations [2]. Construction of the lexicographical Gréobner basis substantially
alleviates the problem of the root ˇnding for polynomial systems. To construct such a
Gréobner basis one can use efˇcient involutive algorithms developed in [3]. Our QuPol

1E-mail: gerdt@jinr.ru
2E-mail: severyan@jinr.ru

226 Gerdt V. P., Severyanov V. M.

package, together with a Gréobner basis software, provides a tool for simulation of quantum
circuits. We illustrate this tool by the example taken from [1].

Our program has a user-friendly graphical interface and a built-in base of the elementary
gates, i.e. quantum gates and wires. The user can easily assemble a quantum circuit from
those elements.

1. QUANTUM CIRCUITS

To compute a reversable Boolean vector-function f : Zn
2 → Zn

2 , one applies the appropriate
unitary transformation Uf to an input state |a〉 composed of some number of qubits:

|b〉 = Uf |a〉 , |a〉 , |b〉 ∈ C
2⊗n. (1)

The output state |b〉 is not the searchable result of the computation until somebody observes
it. After that, the output state becomes classical and can be used anywhere.

Some elementary unitary transformations are called quantum gates. A quantum gate acts
only on a few qubits, on the rest it acts as the identity. Someone assembles a quantum
circuit appropriately aligning quantum gates. The unitary transformation of the circuit is the
composition of its elementary unitary transformations:

Uf = UmUm−1 · · ·U2U1. (2)

Quantum gate basis is a set of universal quantum gates, i.e. any unitary transformation
can be presented as a composition of the gates of the basis. As in the classical case, there are
several sets of universal quantum gates. For our work, it is convenient to choose the universal
gate basis consisting of Hadamard and Toffoli gates.

Hadamard gate turns a computational state into an equally weighted superposition:

H : |0〉 �→ 1√
2
(|0〉 + |1〉),

H : |1〉 �→ 1√
2
(|0〉 − |1〉).

(3)

The resulting superpositions for |0〉 and |1〉 differ in a phase factor.
Toffoli gate is a three-qubit gate. Inputs x and y control the behavior of bit z: only when

x and y simultaneously equal to one bit z is inverted, else, Toffoli gate is a three-fold tensor
product of the identity one-bit gates:

(x, y, z) �→ (x, y, z ⊕ xy). (4)

Action of a quantum circuit can be described by a square matrix with the matrix element
〈b|Uf |a〉 which is a probability amplitude for transition from an initial quantum state |a〉 to
the ˇnal quantum state |b〉. The matrix element is decomposed in accordance with the gate
decomposition of the circuit unitary transformation (2) and is calculated with account of all
the intermediate states ai, i = 1, 2, . . . , m − 1:

〈b|Uf |a〉 =
∑

ai

〈b|Um |am−1〉 · · · 〈a1|U1 |a〉 . (5)

A C# Package for Assembling Quantum Circuits and Generating Associated Polynomial Sets 227

2. SUM-OVER-PATHS AND QUANTUM CIRCUITS

To apply the famous Feynman's sum-over-paths approach to calculate the matrix element
of a quantum circuit, we replace every quantum gate of the circuit under consideration by its
classical counterpart. The main problem here is to select the corresponding classical gate for
quantum Hadamard gate because for any input value, 0 or 1, it gives the equal probability
0 or 1. We denote the output of classical Hadamard gate by the path variable x Ä its value
determines one of the two possible paths of computation.

In Fig. 1 is shown an example of quantum circuit (taken from [1]) and its classical
correspondence. Path variables xi comprise path variable x = (x1, x2, x3, x4)T ∈ Z4

2.

Fig. 1. From quantum to classical circuit

A classical path is a sequence of classical bit strings a, a1, a2, . . . , am = b obtained after
each classical gate has been applied. For each selection of values for the path variables xi

we have a sequence of classical bit strings which is called admissible classical path. An
admissible classical path has a phase which is determined by Hadamard gates. The phase
changes only when the input and the output of Hadamard gate equal to 1 simultaneously and
this coincides with multiplication modulo 2 of input and output values:

ϕ(x) =
∑

Hadamardgates

input • output. (6)

Toffoli gates do not change the phase. For our circuit the phase of the path is:

ϕ(x) = a1x1 ⊕ a2x2 ⊕ x1x3 ⊕ x4(a3 ⊕ x1x2). (7)

The matrix element of a quantum circuit is the sum of all the allowed paths from a to b:

〈b|Uf |a〉 =
1√
2h

∑

x:b(x)=b

(−1)ϕ(x)
, (8)

where h Ä the number of Hadamard gates. All terms in the sum have the same absolute value
but vary in sign.

Let N0 = |{x|b(x) = b & ϕ(x) = 0}| be the number of positive terms in the sum and
N1 = |{x|b(x) = b & ϕ(x) = 1}| the number of negative terms. This equations count
solutions to a system of n + 1 polynomials in h variables over Z2. Then the matrix element
may be written in this convenient form:

〈b|Uf |a〉 =
1√
2h

(N0 − N1) . (9)

228 Gerdt V. P., Severyanov V. M.

3. ASSEMBLING CIRCUIT

For assembling arbitrary quantum circuits composed from Hadamard and Toffoli gates,
we suggest to use the set of elementary gates shown in Fig. 2 and to represent a circuit as a
rectangular table (Fig. 3, a), each cell of which contains an elementary gate, so that the output
for each row is determined by the composition of the row elementary gates. To assemble a
circuit, we deˇne an empty table of the required size. In this case, the output and the phase
are not ˇxed. Then, we place the required elementary gates in appropriate cells and construct
the circuit polynomials (Fig. 3, b).

Fig. 2. Elementary gates

Fig. 3. Elementary decomposition (a) and assembling of a circuit (b)

A circuit is represented in the program as two 2d-arrays: one for the elementary gates
and another for their polynomials. The phase polynomial is separately represented. The
construction of the circuit polynomials:

for each Column in Table of Gates
for each Gate in Column {

construct Gate Polynomial;
if Gate id Hadamard

reconstruct Phase Polynomial; }

A C# Package for Assembling Quantum Circuits and Generating Associated Polynomial Sets 229

The method for constructing a gate polynomial is recursive because of the need to go up or
down for some gates.

Written by us the C# name space Polynomial Modulo 2 can be used independently of our
program. It contains classes needed for handling polynomials over the ˇnite ˇeld Z2. Class
Polynomial is a list of monomials, class Monomial is a list of letters, class Letter is a letter
with its index and power.

4. HANDLING QUANTUM POLYNOMIALS

A system generated by the program is a ˇnite set F ⊂ R of polynomials in the ring

R := Z2[ai, bj][x1, . . . , xh], ai, bj ∈ Z2, i, j = 1, . . . , n (10)

in h variables and 2n binary coefˇcients. One has to count the number of roots N0 and N1

in Z2 of the polynomial sets

F0 = {f, . . . , fk, ϕ }, F1 = {f, . . . , fk, ϕ + 1 }. (11)

Then, the circuit matrix is as in Eq. (9). To count the number of roots we convert F0 and
F1 into the triangular form by computing the lexicographical Gréobner basis by means of the
Buchberger algorithm or by involutive algorithm published in [3]. For the exapmle circuit in
Fig. 1 we have the following polynomial system:

f1 = x2x4 + x3 + b1,
f2 = x2 + b2,
f3 = x4 + b3,
ϕ = x1x2 + x1x3 + a1x1 + a2x2 + a3x4.

(12)

The lexicographical Gréobner basis with the ordering x1
 x2
 x3
 x4 of variables and
for F0 and F1 is as follows:

g1 = (a1 + b1)x1 + a2b2 + a3b3 (+1),
g2 = x2 + b2,
g3 = x3 + b1 + b2b3,
g3 = x4 + b3.

(13)

From the lexicographical Gréobner bases with this ordering of variables we have the following
conditions on the parameters:

a1 + b1 = 0 & a2b2 + a3b3 = 0,
a1 + b1 = 0 & a2b2 + a3b3 = 1.

(14)

Under these conditions we have 2 (0) roots of F0 (F1) and 0 (2) roots of F0 (F1), in all other
cases, we have 1 root of F0 and F1. Some matrix elements:

〈000|U |000〉 =
1
2
, 〈001|U |011〉 = −1

2
, 〈000|U |111〉 = 0. (15)

230 Gerdt V. P., Severyanov V. M.

CONCLUSIONS

The ˇrst version of a program tool for assembling arbitrary quantum circuits and for
constructing quantum polynomial systems has been designed. There is the algorithmic Gréobner
basis approach to convert the system of quantum polynomials into a triangular form which is
useful for computing the number of solutions. The number of solutions uniquely determines
the circuit matrix. Thus, the above software and algorithmic methods provide a tool for
simulating quantum circuits.

REFERENCES

1. Dawson C. M. et al. Quantum Computing and Polynomial Equations over the Finite Field Z2.
quant-ph/0408129. 2004.

2. Gréobner Bases and Applications / Eds. Buchberger B., Winkler F. Cambridge Univ. Press, 1998.

3. Gerdt V. P. Involutive Algorithms for Computing Gréobner Bases // Proc. of the NATO Advanced
Research Workshop ®Computational Commutative and Non-Commutative Algebraic Geometry¯,
Chishinau, June 6Ä11, 2004. IOS Press, 2005.

4. Microsoft Visual C# .net Standard. Version 2003.

