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STABILITY OF YANGÄMILLS FIELDS SYSTEM
IN THE HOMOGENEOUS (ANTI-)SELF-DUAL

BACKGROUND FIELD
V. I. Kuvshinov1, V. A. Piatrou2
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Stability of YangÄMills ˇelds system in the background ˇeld is investigated based on the Toda
criterion, Poincare sections and the values of the maximal Lyapunov exponents. The existence of the
region of regular motion at low densities of energy is demonstrated. Critical energy density of the
orderÄchaos transition is analyzed for different values of the model parameter.
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INTRODUCTION

In contrast to electrodynamics, the dynamics of YangÄMills ˇelds is inherently nonlinear
and chaotic at any density of energy. This assumption was conˇrmed analytically and numer-
ically [1Ä3]. Further analysis of spatially homogeneous ˇeld conˇgurations [4] showed that
inclusion of Higgs ˇeld leads to orderÄchaos transition at some density of energy of classical
gauge ˇelds [5Ä7]. Classical Higgs ˇeld regularizes chaotic dynamics of classical gauge ˇelds
below critical energy density and leads to the emergence of orderÄchaos transition.

Chaos in YangÄMills ˇelds [8] and vacuum state instability in nonperturbative QCD
models [9Ä11] are also considered in connection with conˇnement. It has also been shown
recently that interaction of the constant chromomagnetic ˇeld with axial ˇeld could generate
conˇnement [12]. These results indicate the importance of nonperturbative background ˇelds.

In our previous paper [13] we have investigated the stability of YangÄMillsÄHiggs ˇelds
and described analytically the regions of chaotic and stable motion. In this work YangÄMills
ˇelds are considered on the background of the homogeneous (anti-)self-dual ˇeld [14]. As
the dynamics of arbitrary ˇeld conˇgurations is too complicated, we follow [15] and reduce
our model to spatially homogeneous ˇelds which depend on time. After that we are left with
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only ˇnite number of degrees of freedom (two in our case) which allows us to investigate the
dynamics of the system using conventional methods developed for mechanical systems.

In this work one more mechanism of the chaos suppression in the YangÄMills ˇelds
models is proposed. Homogeneous (anti-)self-dual ˇeld eliminates chaoticity of YangÄMills
dynamics below critical energy density.

1. HOMOGENEOUS (ANTI-)SELF-DUAL FIELD

In this paper the classical dynamics of SU(2) model gauge ˇelds system is considered
on the background of the homogeneous (anti-)self-dual ˇeld. Various properties of this
solution of the YangÄMills equations in SU(2) theory were investigated originally by other
authors [9, 16Ä18]. It was demonstrated that self-dual homogeneous ˇeld provides the Wilson
conˇnement criterion [19]. Therefore, this ˇeld is at least a possible source of conˇnement
in QCD if it is a dominant conˇguration in the QCD functional integral.

Homogeneous self-dual ˇeld is deˇned by the following expressions [14]:

Ba
μ = Bnabμνxν ,

F a
μν = −2Bnabμν ,

where B is value of the ˇeld strength, vector na and tensor bμν characterize the direction
of the ˇeld, respectively, in color space and in space-time. The latter has the following
properties:

bμν = −bνμ, bμνbμρ = δνρ, ˜bμν =
1
2
εμναβbαβ = ±bμν,

where positive and negative signs in the last expression correspond, respectively, to self-dual
and anti-self-dual cases.

As the directions of the background ˇeld in color space and in space-time can be chosen
arbitrarily, we will assume that the gauge ˇeld has color components (n1, n2, n3) = (0, 0, 1)
and space-time components B = (B1, B2, B3) = (0, 0, B).

2. MODEL POTENTIAL OF THE SYSTEM

The Lagrangian of SU(2) gauge theory in Euclidean metrics is

L = −1
4
Ga

μνGa
μν ,

where Ga
μν is a ˇeld tensor which is of the following form:

Ga
μν = ∂μAa

ν − ∂νAa
μ + gεabcAb

μAc
ν .

In the last expression Aa
μ, a = 1, 2, 3 are the three non-Abelian YangÄMills ˇelds and g

denotes the coupling constant of these ˇelds.
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We consider the 	uctuations around background homogeneous self-dual ˇeld. Self-dual
ˇeld is regarded as external one and it is taken into account by substituting modiˇed vector
potential in the YangÄMills Lagrangian:

Aa
μ → Aa

μ + Ba
μ,

where Aa
μ is the 	uctuation to the background ˇeld Ba

μ.
We use the gauge

Aa
4 = 0,

and consider spatially homogeneous ˇeld conˇgurations [15]

∂iA
a
μ = 0, i = 1, . . . , 3.

Our model of YangÄMills ˇelds in (anti-)self-dual ˇeld is constructed in Euclidean space.
In order to analyze the model by using analytical and numerical methods, we should switch to
Minkowski space. We consider chromomagnetic model. Thus, we put chromoelectric ˇeld is
equal to zero. If A1

1 = q1, A2
2 = q2 and the other components of the perturbative YangÄMills

ˇelds are equal to zero, the potential of the model is

V =
1
2
g2q2

1q
2
2 +

1
2
H2 − gHq1q2 +

1
8
g2H2(x2q2

1 + y2q2
2), (1)

where H is chromomagnetic background ˇeld strength, x and y are coordinates which play
the role of the parameters, q1 and q2 are ˇeld variables.

3. STABILITY OF THE MODEL

3.1. Toda Criterion. At ˇrst, stability of the model is investigated using well-known
technique based on the Toda criterion of local instability [20, 21] which allows us to obtain
the value of the critical energy density of orderÄchaos transition in the system. This energy
and minimum of the energy as functions of the model parameter s = gHxy are shown in
Fig. 1.

Fig. 1. Critical energy density of orderÄchaos transition (thin line) and minimum of the energy (thick
line) as functions of the model parameter s = gHxy
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Critical and minimal energies are close to each other for s ∈ (−4, 4). This behav-
ior indicates the absence of the region of regular motion in the system. In other case
(s ∈ (−∞,−4) or s ∈ (4,∞)), the critical energy density is much larger than the minimal
one and the system is regular up to this energy. These results will be checked using numerical
methods in the next subsection.

3.2. Numerical Calculations. The system is investigated using Poincare sections and
Lyapunov exponents for a wide range of model parameter values. These numerical methods
could indicate global regular regimes of motion, whereas the Toda criterion reveals only the
local chaotic properties of the trajectories [22]. Thus, numerical methods are more precise
for stability analysis.

Results of the numerical calculations for the system with model parameter s = 0 are
shown in Figs. 2 and 3. Contrary to the Toda criterion, the system is regular at small energies

below the energy of the background ˇeld Ec = Evac =
1
2
H2. There are only regular regimes

of motion for small energies (e.g., Figs. 2, a and 3, a) and two types of motion for energies
above Ec (Figs. 2, b and 3, b).

Fig. 2. Poincare sections for two-dimensional YangÄMills system in the background ˇeld for s = 0,

H = 1, E = 0.005 (a) and E = 0.15 (b)

Fig. 3. Maximal Lyapunov exponents for two-dimensional YangÄMills system in the background ˇeld

for s = 0, H = 1, E = 0.15 (a) and E = 0.68 (b)
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We have the following Poincare sections (Fig. 4) for large model parameter values. It is
seen that the system is fully regular (Fig. 4, a) for high values of energy (Evac � E < Ec) as
it was revealed by the Toda criterion. All trajectories have zero maximal Lyapunov exponents
for this case. Two types of trajectories (chaotic and regular) are present in the system with
energies above the critical one (Fig. 4, b).

Fig. 4. Poincare sections for two-dimensional YangÄMills system in the background ˇeld for s = 25.5,

g = 0.1, H = 1, x = 15, y = 17, E = 21 (a) and E = 100 (b). Thin line is the border of the phase
space

It is seen that the Toda criterion describes rather well the region of the large values of
model parameter s and fails for s ∈ (−4, 4).

Numerical calculations have shown that there is a region of regular motion at low densities
of energy in our system at any value of the model parameter. Therefore, homogeneous
(anti-)self-dual ˇeld regularizes chaotic dynamics of the YangÄMills ˇelds system.

CONCLUSIONS

The existence of the nonperturbative component of the YangÄMills ˇeld is crucial for the
conˇnement phenomenon. On the other hand, the classical dynamics of the YangÄMills ˇeld
is chaotic at any density of energy in the absence of background ˇelds and can be regularized
only if some other ˇelds, for example, the Higgs ˇeld, are included in the model.

In this work we have demonstrated that the homogeneous (anti-)self-dual background ˇeld
has similar properties. The YangÄMills ˇeld on such a background has the region of regular
motion at low densities of energy. There is an orderÄchaos transition in the system at any
values of model parameters. The critical density of energy of this transition is equal to the
background ˇeld energy for small parameters and is much larger for large parameter values.
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