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SOME ASYMPTOTIC FORMULAE FOR ONE-ELECTRON
TWO-CENTER PROBLEM

Ts. Tsogbayar 1

Joint Institute for Nuclear Research, Dubna

Asymptotic formulae of some expectation values related to the relativistic corrections in inverse
powers of the internuclear distance R for the 1sσg electron state of hydrogen molecular ion H+

2 and the
1sσ molecule-like state of antiprotonic helium atom He+p̄ are obtained with the use of the ˇrst-order
perturbation function. Using these asymptotic formulae, the relativistic correction of order mα6 for
these states in reciprocal powers of the internuclear distance R is derived to accuracy of O(R−4).
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Ö¤· ³¨ ¶μ²ÊÎ¥´Ò  ¸¨³¶ÉμÉ¨Î¥¸±¨¥ ¢Ò· ¦¥´¨Ö ¤²Ö ´¥±μÉμ·ÒÌ μ¦¨¤ ¥³ÒÌ ¢¥²¨Î¨´, μÉ´μ¸ÖÐ¨Ì¸Ö
± ·¥²ÖÉ¨¢¨¸É¸±¨³ ¶μ¶· ¢± ³ ¤²Ö Ô²¥±É·μ´´μ£μ 1sσg-¸μ¸ÉμÖ´¨Ö ³μ²¥±Ê²Ö·´μ£μ ¨μ´  ¢μ¤μ·μ¤  H+

2

¨ ³μ²¥±Ê²μ¶μ¤μ¡´μ£μ 1sσ-¸μ¸ÉμÖ´¨Ö  Éμ³   ´É¨¶·μÉμ´´μ£μ £¥²¨Ö He+p̄. „²Ö É ±¨Ì ¸μ¸ÉμÖ´¨°
¸ ¶μ³μÐÓÕ  ¸¨³¶ÉμÉ¨± ¢Ò¢¥¤¥´Ò ·¥²ÖÉ¨¢¨¸É¸±¨¥ ¶μ¶· ¢±¨ ¶μ·Ö¤±  mα6 ¢ ¢¨¤¥ · §²μ¦¥´¨Ö ¶μ
μ¡· É´Ò³ ¸É¥¶¥´Ö³ · ¸¸ÉμÖ´¨Ö R ¸ μ¸É ÉμÎ´Ò³ Î²¥´μ³ O(R−4).

PACS: 31.30.Jv

INTRODUCTION

The H+
2 molecular ion is a simple example of one-electron two-center system. In the case

of large internuclear distance R of this ion, the wave function and the electronic energy were
found by many authors as earlier applications of wave mechanics [1Ä5]. Since this time,
the electronic energy expansion in inverse powers of the internuclear distance R, with the
coefˇcients expressed in terms of nuclear charges and separated atomic quantum numbers,
was also found by many different authors [6Ä9]. In the present work our purposes are to
derive the asymptotic formulae of some expectation values in inverse powers of internuclear
distance R for the 1sσg electron state of H+

2 molecular ion and the 1sσ molecule-like state of
antiprotonic helium atom He+p̄ and to calculate analytically the relativistic correction of order
mα6 for these states using the obtained asymptotic formulae. The relativistic corrections of
orders mα4 and mα6 for the states had been calculated numerically for a wide range of R
in [10,11].
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1. ASYMPTOTIC FORMULAE FOR SOME EXPECTATION VALUES

In this section we will consider the evaluations of the expectation values of V , V 2 and
pV p through the ˇrst-order approximation.

Here V is the Coulomb potential of the system, and has the form:

V = −Z1

r1
− Z2

r2
, (1)

and the momentum operator for the electron is

p = −i

(
∂

∂r1

r1

r1
+

∂

∂r1

r2

r2

)
, (2)

where r1 and r2 are the distances from an electron to nuclei 1 and 2, respectively.
In ordinary perturbation theory, the Schréodinger equation is

Hψ = Eψ, (3)

where H = H0 + H ′ contains the unperturbed Hamiltonian H0 and perturbation H ′. Then
we are looking for a solution of (3):

E = E0 + E1 + E2 + . . . , (4)

ψ = ψ0 + ψ1 + . . . (5)

When internuclear distance R becomes large, we consider an atomic region (r1 � R),
therefore, the system is in fact deemed as a hydrogen-like atom perturbed by the charge Z2:
the unperturbed Hamiltonian is taken in the form:

H0 = −Δr1

2m
− Z1

r1
, (6)

and the perturbation H ′ is the Coulomb potential of the charge Z2, and is expanded in powers
of R−1:

H ′ = −Z2

r2
= −Z2

∞∑
n=1

rn
1 Pn(cos θ1)

Rn+1
. (7)

Here θ1 is the angle between the vectors r1 and R.
Then for the unperturbed equation

H0ψ0(r1) = E0ψ0(r1). (8)

The wave function for the 1sσ molecule-like state of He+p̄ is asymmetric and may be
written as

ψ0(r1) =
1√
π

Z
3/2
1 e−Z1r1 . (9)

The wave function for the 1sσg electron state of H+
2 molecular ion should be symmetrized

and is written as

ψ0(r1, r2) =
1√
2
(ψ0(r1) + ψ0(r2)). (10)
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The ground state unperturbed energy is equal to

E0 = −Z2
1

2
. (11)

The perturbation (7) gives the ˇrst-order correction E1 to the unperturbed energy, and ne-
glecting the exponentially decreasing terms, one gets

E1 = 〈ψ0|H ′|ψ0〉 ≡
∫

dr1ψ
∗
0(r1)H ′ψ0(r1) = −Z2

R
. (12)

In order to obtain the ˇrst-order wave function, we consider the following one-electron
and one-center equation with the perturbation in the dipole approximation H ′ = −F2r1 cos θ1,
a static ˇeld generated by the charge Z2, and its contribution to the unperturbed energy is
vanish due to a symmetry, and F2 = Z2/R2 is electric ˇeld strength.

The wave equation for ψ1 is

(E0 − H0)ψ1 = H ′ψ0. (13)

So that the ˇrst-order wave function for the 1sσ molecule-like state of He+p̄ is found

ψ1(r1) = − F2√
π

Z
3/2
1

( r1

Z2
1

+
r2
1

2Z1

)
e−Z1r1 cos θ1, (14)

where Z1 > Z2, and for the 1sσg electron state of H+
2 molecular is taken in the form:

ψ1(r1, r2) =
1√
2
(ψ1(r1) + ψ1(r2)). (15)

With the aid of the above wave functions, for the 1sσg electron state of H+
2 molecular

ion (Z = Z1 = Z2), one gets through the ˇrst-order approximation:

〈V 〉 ≡ 〈ψ0 + ψ1|V |ψ0 + ψ1〉 = −Z2 − Z

R
+ O(R−4), (16)

〈
V 2

〉
= 2Z4 +

2Z3

R
+

Z2

R2
+ O(R−4), (17)

〈
pV 2p

〉
= 2Z6 +

2Z5

R
+

Z4

R2
+ O(R−4), (18)

and for the 1sσ molecule-like state of antiprotonic helium He+p̄ (Z1 > Z2):

〈V 〉 = −Z2
1 − Z2

R
+ O(R−4), (19)

〈
V 2

〉
= 2Z4

1 +
2Z2

1Z2

R
+

Z2
2

R2
+ O(R−4), (20)

〈
pV 2p

〉
= 2Z6

1 +
2Z4

1Z2

R
+

Z2
1Z2

2

R2
+ O(R−4). (21)

In above asymptotic formulae (16)Ä(21), we neglect the exponentially decreasing terms.
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2. RELATIVISTIC CORRECTIONS OF ORDER mα6

TO COULOMB TWO-CENTER PROBLEM

In this section we will think over the analytic calculation of relativistic corrections of
order mα6 for the ground states of the system, but those had been described and calculated
numerically in our previous letter [11].

Relativistic correction of order mα6 can be expressed as [11]

ΔE(6) =
〈
H ′

BQ(E0 − H0)−1QH ′
B

〉
+

3E0

〈
V 2

〉
4m2

− 5E2
0 〈V 〉

4m2
− 3πE0 〈(ρ1 + ρ2)〉

4m3
+

+

〈
pV 2p

〉
8m3

+
〈V 〉 〈HB〉

2m
+

E3
0

2m2
. (22)

Here Q = I− |ψ0〉〈ψ0| is a projection operator and HB is the BreitÄPauli Hamiltonian:

HB = − p4

8m3
+

1
8m2

[Z14πδ(r1) + Z24πδ(r2)] +
(

Z1
[r1 × p]
2m2r3

1

+ Z2
[r2 × p]
2m2r3

2

)
s , (23)

where p and s are the momentum and spin of an electron, respectively.
Then H ′

B is the modiˇed BreitÄPauli operator

H ′
B = − p4

8m3
+

π

m2
[Z1δ(r1) + Z2δ(r2)] −

1
4m2

(E1+E2)∇ + 2U(H0 − E0), (24)

where U = − 1
4m

V , Ei = −Ziri/r3
i and ρi = Ziδ(ri) (ΔV = 4πρ).

To calculate the second-order contribution in Eq. (22) is a main task in this section. We
ˇrstly solve the following ˇrst-order approximation equation for the hydrogen-like atom, and
use the solution ψ1 to evaluate this second-order contribution for the system.

In the ˇrst-order approximation, the wave equation is

(E0 − H0)ψ1 = (HBP − E1)ψ0, (25)

where

HBP = − p4

8m3
+

Z1π

2m2
δ(r1), E1 = 〈HBP〉 = −Z4

1

8
.

The solution of Eq. (25) ψ1 is found in the form:

ψ1 =
Z1

4mr1
ψ0 + ψ̃1, (26)

where ψ̃1 is a less singular function, ψ̃1 ∼ ln r1 at r1 → 0, and

ψ̃1 =
(Z2

1

2
− Z2

1

2
ln r1 −

Z2
1

2
ln(2Z1) −

γZ2
1

2

)
ψ0,

where γ 	 0.5772.
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Then without any difˇculties in an integration, the second-order contribution is eva-
luated as

E
(6)
1 =

〈
H ′

BQ(E0 − H0)−1QH ′
B

〉
=

〈
ψ̃1|(H ′

BP − 〈HBP〉)|ψ0

〉
. (27)

In this evaluation, an explicit form of the modiˇed BreitÄPauli operator is

H ′
B = − p4

8m3
+

π

m2
Z2δ(r2) +

Z1

4m2 r2
1

∂

∂r1
+

Z2

4m2 r2
2

∂

∂r2
+

Z1

4m2

r1r2

r3
1r2

∂

∂r2
+

+
Z2

4m2

r1r2

r1r3
2

∂

∂r1
+ 2U(H0 − E0). (28)

Substituting (28) into (27), and evaluating the integral, and neglecting the exponentially
decreasing terms, we obtain the second-order contribution:

E
(6)
1 = −Z6

1

4
+ O(R−4). (29)

The other terms except for the ˇrst term in Eq. (22) can be summed with the aid of the
asymptotic formulae obtained in the previous section:

E
(6)
2 =

3E0

〈
V 2

〉
4m2

− 5E2
0 〈V 〉

4m2
− 3πE0 〈(ρ1 + ρ2)〉

4m3
+

〈
pV 2p

〉
8m3

+

+
〈V 〉 〈HB〉

2m
+

E3
0

2m2
=

3Z6
1

16
+ O(R−4). (30)

In an evaluation of (30), we used

E0 = −Z2
1

2
− Z2

R
, p4 = 4m2(E2

0 − 2E0V + V 2). (31)

Finally, the relativistic correction of order mα6 for the ground states of both hydrogen
molecular ion H+

2 and antiprotonic helium atom He+p̄ can be found analytically:

ΔE(6) = E
(6)
1 + E

(6)
2 = −Z6

1

4
+

3Z6
1

16
= −Z6

1

16
+ O(R−4). (32)

In case of large R, the spin-orbit term of the BreitÄPauli Hamiltonian (23) gives us the
result with the exponentially decreasing terms in frame of the second-order contribution, so
that this calculation is omitted in this letter.

CONCLUSION

Asymptotic formulae of some expectation values related to the relativistic corrections in
powers of R−1 for the 1sσg electron state of H+

2 molecular ion and the 1sσ molecule-like
state of antiprotonic helium He+p̄ have been derived through the ˇrst-order perturbation.
Using asymptotic formulae the asymptotically analytic expression of evaluation of relativistic
corrections of order mα6 for both ground states in reciprocal powers of R has been obtained
up to accuracy of O(R−4), which had been presented and calculated numerically in [11].
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Appendix
ANALYTICAL EVALUATION AND DIVERGENT TERMS

OF THE EXPECTATION VALUES

The calculation of the expectation values is reduced to evaluation of integrals of the type

Γlm(α, β, R) =
∫

rl−1
1 rm−1

2 e−αr1−βr2d3r. (A.1)

Integers (l, m) are, in general, non-negative, but in case of singular matrix elements one of
the indices can be negative.

The function Γ00 can be easily obtained:

Γ00(α, β, R) =
4π

R

e−βR − e−αR

α2 − β2
, (A.2)

where R is the distance between nuclei, then Γlm(α, β, R) for non-negative (l, m) may be
generated from (A.2) by means of relation

Γlm(α, β, R) =
(
− ∂

∂α

)l (
− ∂

∂β

)m

Γ00(α, β, R). (A.3)

Integral Γ−1,0(α, β, R) is expressed by

Γ−1,0(α, β, R) =
2π

Rβ

{
e−βR[lnR(α + β) + Ei (−(α − β)R)]−

− e−βR ln R(α − β) − eβREi(−(α + β)R)
}

. (A.4)

Worthy to note that a function in square brackets is analytic when argument is zero. Integrals
Γ−1,m are generated from Γ−1,0 similar to (A.3):

Γ−1,m(α, β, R) =
(
− ∂

∂β

)m

Γ−1,0(α, β, R). (A.5)

The asymptotic series of exponential integral function encountered in (A.4) is [12]

Ei (z) = ez
∑
n=0

n!
(z)n+1

, −Ei (−z) = e−z
∑
n=0

(−)n n!
(z)n+1

.
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