SOME ASYMPTOTIC FORMULAE FOR ONE-ELECTRON TWO-CENTER PROBLEM

Ts. Tsogbayar ${ }^{1}$
Joint Institute for Nuclear Research, Dubna

Abstract

Asymptotic formulae of some expectation values related to the relativistic corrections in inverse powers of the internuclear distance R for the $1 s \sigma_{g}$ electron state of hydrogen molecular ion H_{2}^{+}and the $1 s \sigma$ molecule-like state of antiprotonic helium atom $\mathrm{He}^{+} \bar{p}$ are obtained with the use of the first-order perturbation function. Using these asymptotic formulae, the relativistic correction of order $m \alpha^{6}$ for these states in reciprocal powers of the internuclear distance R is derived to accuracy of $\mathcal{O}\left(R^{-4}\right)$.

В первом порядке теории возмущений по обратным степеням большого расстояния R между ядрами получены асимптотические выражения для некоторых ожидаемых величин, относящихся к релятивистским поправкам для электронного $1 s \sigma_{g}$-состояния молекулярного иона водорода H_{2}^{+} и молекулоподобного $1 s \sigma$-состояния атома антипротонного гелия $\mathrm{He}^{+} \bar{p}$. Для таких состояний с помощью асимптотик выведены релятивистские поправки порядка $m \alpha^{6}$ в виде разложения по обратным степеням расстояния R с остаточным членом $\mathcal{O}\left(R^{-4}\right)$.

PACS: 31.30.Jv

INTRODUCTION

The H_{2}^{+}molecular ion is a simple example of one-electron two-center system. In the case of large internuclear distance R of this ion, the wave function and the electronic energy were found by many authors as earlier applications of wave mechanics [1-5]. Since this time, the electronic energy expansion in inverse powers of the internuclear distance R, with the coefficients expressed in terms of nuclear charges and separated atomic quantum numbers, was also found by many different authors [6-9]. In the present work our purposes are to derive the asymptotic formulae of some expectation values in inverse powers of internuclear distance R for the $1 s \sigma_{g}$ electron state of H_{2}^{+}molecular ion and the $1 s \sigma$ molecule-like state of antiprotonic helium atom $\mathrm{He}^{+} \bar{p}$ and to calculate analytically the relativistic correction of order $m \alpha^{6}$ for these states using the obtained asymptotic formulae. The relativistic corrections of orders $m \alpha^{4}$ and $m \alpha^{6}$ for the states had been calculated numerically for a wide range of R in $[10,11]$.

[^0]
1. ASYMPTOTIC FORMULAE FOR SOME EXPECTATION VALUES

In this section we will consider the evaluations of the expectation values of V, V^{2} and $\mathbf{p} V \mathbf{p}$ through the first-order approximation.

Here V is the Coulomb potential of the system, and has the form:

$$
\begin{equation*}
V=-\frac{Z_{1}}{r_{1}}-\frac{Z_{2}}{r_{2}} \tag{1}
\end{equation*}
$$

and the momentum operator for the electron is

$$
\begin{equation*}
\mathbf{p}=-i\left(\frac{\partial}{\partial r_{1}} \frac{\mathbf{r}_{1}}{r_{1}}+\frac{\partial}{\partial r_{1}} \frac{\mathbf{r}_{2}}{r_{2}}\right) \tag{2}
\end{equation*}
$$

where r_{1} and r_{2} are the distances from an electron to nuclei 1 and 2 , respectively.
In ordinary perturbation theory, the Schrödinger equation is

$$
\begin{equation*}
H \psi=E \psi \tag{3}
\end{equation*}
$$

where $H=H_{0}+H^{\prime}$ contains the unperturbed Hamiltonian H_{0} and perturbation H^{\prime}. Then we are looking for a solution of (3):

$$
\begin{gather*}
E=E_{0}+E_{1}+E_{2}+\ldots \tag{4}\\
\psi=\psi_{0}+\psi_{1}+\ldots \tag{5}
\end{gather*}
$$

When internuclear distance R becomes large, we consider an atomic region ($r_{1} \ll R$), therefore, the system is in fact deemed as a hydrogen-like atom perturbed by the charge Z_{2} : the unperturbed Hamiltonian is taken in the form:

$$
\begin{equation*}
H_{0}=-\frac{\Delta_{r_{1}}}{2 m}-\frac{Z_{1}}{r_{1}} \tag{6}
\end{equation*}
$$

and the perturbation H^{\prime} is the Coulomb potential of the charge Z_{2}, and is expanded in powers of R^{-1} :

$$
\begin{equation*}
H^{\prime}=-\frac{Z_{2}}{r_{2}}=-Z_{2} \sum_{n=1}^{\infty} \frac{r_{1}^{n} P_{n}\left(\cos \theta_{1}\right)}{R^{n+1}} \tag{7}
\end{equation*}
$$

Here θ_{1} is the angle between the vectors \mathbf{r}_{1} and \mathbf{R}.
Then for the unperturbed equation

$$
\begin{equation*}
H_{0} \psi_{0}\left(\mathbf{r}_{1}\right)=E_{0} \psi_{0}\left(\mathbf{r}_{1}\right) \tag{8}
\end{equation*}
$$

The wave function for the $1 s \sigma$ molecule-like state of $\mathrm{He}^{+} \bar{p}$ is asymmetric and may be written as

$$
\begin{equation*}
\psi_{0}\left(\mathbf{r}_{1}\right)=\frac{1}{\sqrt{\pi}} Z_{1}^{3 / 2} \mathrm{e}^{-Z_{1} r_{1}} \tag{9}
\end{equation*}
$$

The wave function for the $1 s \sigma_{g}$ electron state of H_{2}^{+}molecular ion should be symmetrized and is written as

$$
\begin{equation*}
\psi_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{0}\left(\mathbf{r}_{1}\right)+\psi_{0}\left(\mathbf{r}_{2}\right)\right) \tag{10}
\end{equation*}
$$

The ground state unperturbed energy is equal to

$$
\begin{equation*}
E_{0}=-\frac{Z_{1}^{2}}{2} \tag{11}
\end{equation*}
$$

The perturbation (7) gives the first-order correction E_{1} to the unperturbed energy, and neglecting the exponentially decreasing terms, one gets

$$
\begin{equation*}
E_{1}=\left\langle\psi_{0}\right| H^{\prime}\left|\psi_{0}\right\rangle \equiv \int d \mathbf{r}_{1} \psi_{0}^{*}\left(\mathbf{r}_{1}\right) H^{\prime} \psi_{0}\left(\mathbf{r}_{1}\right)=-\frac{Z_{2}}{R} \tag{12}
\end{equation*}
$$

In order to obtain the first-order wave function, we consider the following one-electron and one-center equation with the perturbation in the dipole approximation $H^{\prime}=-F_{2} r_{1} \cos \theta_{1}$, a static field generated by the charge Z_{2}, and its contribution to the unperturbed energy is vanish due to a symmetry, and $F_{2}=Z_{2} / R^{2}$ is electric field strength.

The wave equation for ψ_{1} is

$$
\begin{equation*}
\left(E_{0}-H_{0}\right) \psi_{1}=H^{\prime} \psi_{0} \tag{13}
\end{equation*}
$$

So that the first-order wave function for the $1 s \sigma$ molecule-like state of $\mathrm{He}^{+} \bar{p}$ is found

$$
\begin{equation*}
\psi_{1}\left(\mathbf{r}_{1}\right)=-\frac{F_{2}}{\sqrt{\pi}} Z_{1}^{3 / 2}\left(\frac{r_{1}}{Z_{1}^{2}}+\frac{r_{1}^{2}}{2 Z_{1}}\right) \mathrm{e}^{-Z_{1} r_{1}} \cos \theta_{1} \tag{14}
\end{equation*}
$$

where $Z_{1}>Z_{2}$, and for the $1 s \sigma_{g}$ electron state of H_{2}^{+}molecular is taken in the form:

$$
\begin{equation*}
\psi_{1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\psi_{1}\left(\mathbf{r}_{1}\right)+\psi_{1}\left(\mathbf{r}_{2}\right)\right) \tag{15}
\end{equation*}
$$

With the aid of the above wave functions, for the $1 s \sigma_{g}$ electron state of H_{2}^{+}molecular ion ($Z=Z_{1}=Z_{2}$), one gets through the first-order approximation:

$$
\begin{gather*}
\langle V\rangle \equiv\left\langle\psi_{0}+\psi_{1}\right| V\left|\psi_{0}+\psi_{1}\right\rangle=-Z^{2}-\frac{Z}{R}+\mathcal{O}\left(R^{-4}\right) \tag{16}\\
\left\langle V^{2}\right\rangle=2 Z^{4}+\frac{2 Z^{3}}{R}+\frac{Z^{2}}{R^{2}}+\mathcal{O}\left(R^{-4}\right) \tag{17}\\
\left\langle\mathbf{p} V^{2} \mathbf{p}\right\rangle=2 Z^{6}+\frac{2 Z^{5}}{R}+\frac{Z^{4}}{R^{2}}+\mathcal{O}\left(R^{-4}\right) \tag{18}
\end{gather*}
$$

and for the $1 s \sigma$ molecule-like state of antiprotonic helium $\mathrm{He}^{+} \bar{p}\left(Z_{1}>Z_{2}\right)$:

$$
\begin{gather*}
\langle V\rangle=-Z_{1}^{2}-\frac{Z_{2}}{R}+\mathcal{O}\left(R^{-4}\right) \tag{19}\\
\left\langle V^{2}\right\rangle=2 Z_{1}^{4}+\frac{2 Z_{1}^{2} Z_{2}}{R}+\frac{Z_{2}^{2}}{R^{2}}+\mathcal{O}\left(R^{-4}\right) \tag{20}\\
\left\langle\mathbf{p} V^{2} \mathbf{p}\right\rangle=2 Z_{1}^{6}+\frac{2 Z_{1}^{4} Z_{2}}{R}+\frac{Z_{1}^{2} Z_{2}^{2}}{R^{2}}+\mathcal{O}\left(R^{-4}\right) \tag{21}
\end{gather*}
$$

In above asymptotic formulae (16)-(21), we neglect the exponentially decreasing terms.

2. RELATIVISTIC CORRECTIONS OF ORDER $m \alpha^{6}$ TO COULOMB TWO-CENTER PROBLEM

In this section we will think over the analytic calculation of relativistic corrections of order $m \alpha^{6}$ for the ground states of the system, but those had been described and calculated numerically in our previous letter [11].

Relativistic correction of order $m \alpha^{6}$ can be expressed as [11]

$$
\begin{align*}
\Delta E^{(6)}=\left\langle H_{B}^{\prime} Q\left(E_{0}-H_{0}\right)^{-1} Q H_{B}^{\prime}\right\rangle+\frac{3 E_{0}\left\langle V^{2}\right\rangle}{4 m^{2}} & -\frac{5 E_{0}^{2}\langle V\rangle}{4 m^{2}}-\frac{3 \pi E_{0}\left\langle\left(\rho_{1}+\rho_{2}\right)\right\rangle}{4 m^{3}}+ \\
& +\frac{\left\langle\mathbf{p} V^{2} \mathbf{p}\right\rangle}{8 m^{3}}+\frac{\langle V\rangle\left\langle H_{B}\right\rangle}{2 m}+\frac{E_{0}^{3}}{2 m^{2}} \tag{22}
\end{align*}
$$

Here $Q=I-\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$ is a projection operator and H_{B} is the Breit-Pauli Hamiltonian:

$$
\begin{equation*}
H_{B}=-\frac{\mathbf{p}^{4}}{8 m^{3}}+\frac{1}{8 m^{2}}\left[Z_{1} 4 \pi \delta\left(\mathbf{r}_{1}\right)+Z_{2} 4 \pi \delta\left(\mathbf{r}_{2}\right)\right]+\left(Z_{1} \frac{\left[\mathbf{r}_{1} \times \mathbf{p}\right]}{2 m^{2} r_{1}^{3}}+Z_{2} \frac{\left[\mathbf{r}_{2} \times \mathbf{p}\right]}{2 m^{2} r_{2}^{3}}\right) \mathbf{s} \tag{23}
\end{equation*}
$$

where \mathbf{p} and \mathbf{s} are the momentum and spin of an electron, respectively.
Then H_{B}^{\prime} is the modified Breit-Pauli operator

$$
\begin{equation*}
H_{B}^{\prime}=-\frac{p^{4}}{8 m^{3}}+\frac{\pi}{m^{2}}\left[Z_{1} \delta\left(\mathbf{r}_{1}\right)+Z_{2} \delta\left(\mathbf{r}_{2}\right)\right]-\frac{1}{4 m^{2}}\left(\mathcal{E}_{1}+\mathcal{E}_{2}\right) \boldsymbol{\nabla}+2 U\left(H_{0}-E_{0}\right) \tag{24}
\end{equation*}
$$

where $U=-\frac{1}{4 m} V, \mathcal{E}_{i}=-Z_{i} \mathbf{r}_{i} / r_{i}^{3}$ and $\rho_{i}=Z_{i} \delta\left(\mathbf{r}_{i}\right)(\Delta V=4 \pi \rho)$.
To calculate the second-order contribution in Eq. (22) is a main task in this section. We firstly solve the following first-order approximation equation for the hydrogen-like atom, and use the solution ψ_{1} to evaluate this second-order contribution for the system.

In the first-order approximation, the wave equation is

$$
\begin{equation*}
\left(E_{0}-H_{0}\right) \psi_{1}=\left(H_{\mathrm{BP}}-E_{1}\right) \psi_{0} \tag{25}
\end{equation*}
$$

where

$$
H_{\mathrm{BP}}=-\frac{p^{4}}{8 m^{3}}+\frac{Z_{1} \pi}{2 m^{2}} \delta\left(\mathbf{r}_{1}\right), \quad E_{1}=\left\langle H_{\mathrm{BP}}\right\rangle=-\frac{Z_{1}^{4}}{8}
$$

The solution of Eq. (25) ψ_{1} is found in the form:

$$
\begin{equation*}
\psi_{1}=\frac{Z_{1}}{4 m r_{1}} \psi_{0}+\tilde{\psi}_{1} \tag{26}
\end{equation*}
$$

where $\tilde{\psi}_{1}$ is a less singular function, $\tilde{\psi}_{1} \sim \ln r_{1}$ at $r_{1} \rightarrow 0$, and

$$
\tilde{\psi}_{1}=\left(\frac{Z_{1}^{2}}{2}-\frac{Z_{1}^{2}}{2} \ln r_{1}-\frac{Z_{1}^{2}}{2} \ln \left(2 Z_{1}\right)-\frac{\gamma Z_{1}^{2}}{2}\right) \psi_{0}
$$

where $\gamma \simeq 0.5772$.

Then without any difficulties in an integration, the second-order contribution is evaluated as

$$
\begin{equation*}
E_{1}^{(6)}=\left\langle H_{B}^{\prime} Q\left(E_{0}-H_{0}\right)^{-1} Q H_{B}^{\prime}\right\rangle=\left\langle\tilde{\psi}_{1}\right|\left(H_{\mathrm{BP}}^{\prime}-\left\langle H_{\mathrm{BP}}\right\rangle\right)\left|\psi_{0}\right\rangle \tag{27}
\end{equation*}
$$

In this evaluation, an explicit form of the modified Breit-Pauli operator is

$$
\begin{align*}
& H_{B}^{\prime}=-\frac{p^{4}}{8 m^{3}}+\frac{\pi}{m^{2}} Z_{2} \delta\left(\mathbf{r}_{2}\right)+\frac{Z_{1}}{4 m^{2} r_{1}^{2}} \frac{\partial}{\partial r_{1}}+\frac{Z_{2}}{4 m^{2} r_{2}^{2}} \frac{\partial}{\partial r_{2}}+\frac{Z_{1}}{4 m^{2}} \frac{\mathbf{r}_{1} \mathbf{r}_{2}}{r_{1}^{3} r_{2}} \frac{\partial}{\partial r_{2}}+ \\
&+\frac{Z_{2}}{4 m^{2}} \frac{\mathbf{r}_{1} \mathbf{r}_{2}}{r_{1} r_{2}^{3}} \frac{\partial}{\partial r_{1}}+2 U\left(H_{0}-E_{0}\right) \tag{28}
\end{align*}
$$

Substituting (28) into (27), and evaluating the integral, and neglecting the exponentially decreasing terms, we obtain the second-order contribution:

$$
\begin{equation*}
E_{1}^{(6)}=-\frac{Z_{1}^{6}}{4}+\mathcal{O}\left(R^{-4}\right) \tag{29}
\end{equation*}
$$

The other terms except for the first term in Eq. (22) can be summed with the aid of the asymptotic formulae obtained in the previous section:

$$
\begin{align*}
& E_{2}^{(6)}=\frac{3 E_{0}\left\langle V^{2}\right\rangle}{4 m^{2}}-\frac{5 E_{0}^{2}\langle V\rangle}{4 m^{2}}-\frac{3 \pi E_{0}\left\langle\left(\rho_{1}+\rho_{2}\right)\right\rangle}{4 m^{3}}+\frac{\left\langle\mathbf{p} V^{2} \mathbf{p}\right\rangle}{8 m^{3}}+ \\
&+\frac{\langle V\rangle\left\langle H_{B}\right\rangle}{2 m}+\frac{E_{0}^{3}}{2 m^{2}}=\frac{3 Z_{1}^{6}}{16}+\mathcal{O}\left(R^{-4}\right) \tag{30}
\end{align*}
$$

In an evaluation of (30), we used

$$
\begin{equation*}
E_{0}=-\frac{Z_{1}^{2}}{2}-\frac{Z_{2}}{R}, \quad p^{4}=4 m^{2}\left(E_{0}^{2}-2 E_{0} V+V^{2}\right) \tag{31}
\end{equation*}
$$

Finally, the relativistic correction of order $m \alpha^{6}$ for the ground states of both hydrogen molecular ion H_{2}^{+}and antiprotonic helium atom $\mathrm{He}^{+} \bar{p}$ can be found analytically:

$$
\begin{equation*}
\Delta E^{(6)}=E_{1}^{(6)}+E_{2}^{(6)}=-\frac{Z_{1}^{6}}{4}+\frac{3 Z_{1}^{6}}{16}=-\frac{Z_{1}^{6}}{16}+\mathcal{O}\left(R^{-4}\right) \tag{32}
\end{equation*}
$$

In case of large R, the spin-orbit term of the Breit-Pauli Hamiltonian (23) gives us the result with the exponentially decreasing terms in frame of the second-order contribution, so that this calculation is omitted in this letter.

CONCLUSION

Asymptotic formulae of some expectation values related to the relativistic corrections in powers of R^{-1} for the $1 s \sigma_{g}$ electron state of H_{2}^{+}molecular ion and the $1 s \sigma$ molecule-like state of antiprotonic helium $\mathrm{He}^{+} \bar{p}$ have been derived through the first-order perturbation. Using asymptotic formulae the asymptotically analytic expression of evaluation of relativistic corrections of order $m \alpha^{6}$ for both ground states in reciprocal powers of R has been obtained up to accuracy of $\mathcal{O}\left(R^{-4}\right)$, which had been presented and calculated numerically in [11].

Acknowledgements. The author would like to thank V.I. Korobov for his helpful discussions and a careful reading of the manuscript, and a group of Few-Body System at Bogoliubov Laboratory of Theoretical Physics, JINR, for a generous opportunity to present my results at the seminar. This work has been supported by the Russian Foundation for Basic Research under the grant No. 05-02-16618.

Appendix
 ANALYTICAL EVALUATION AND DIVERGENT TERMS OF THE EXPECTATION VALUES

The calculation of the expectation values is reduced to evaluation of integrals of the type

$$
\begin{equation*}
\Gamma_{l m}(\alpha, \beta, R)=\int r_{1}^{l-1} r_{2}^{m-1} \mathrm{e}^{-\alpha r_{1}-\beta r_{2}} d^{3} \mathbf{r} \tag{A.1}
\end{equation*}
$$

Integers (l, m) are, in general, non-negative, but in case of singular matrix elements one of the indices can be negative.

The function Γ_{00} can be easily obtained:

$$
\begin{equation*}
\Gamma_{00}(\alpha, \beta, R)=\frac{4 \pi}{R} \frac{\mathrm{e}^{-\beta R}-\mathrm{e}^{-\alpha R}}{\alpha^{2}-\beta^{2}} \tag{A.2}
\end{equation*}
$$

where R is the distance between nuclei, then $\Gamma_{l m}(\alpha, \beta, R)$ for non-negative (l, m) may be generated from (A.2) by means of relation

$$
\begin{equation*}
\Gamma_{l m}(\alpha, \beta, R)=\left(-\frac{\partial}{\partial \alpha}\right)^{l}\left(-\frac{\partial}{\partial \beta}\right)^{m} \Gamma_{00}(\alpha, \beta, R) \tag{A.3}
\end{equation*}
$$

Integral $\Gamma_{-1,0}(\alpha, \beta, R)$ is expressed by

$$
\begin{align*}
& \Gamma_{-1,0}(\alpha, \beta, R)=\frac{2 \pi}{R \beta}\left\{\mathrm{e}^{-\beta R}[\ln R(\alpha\right.+\beta)+ \\
&\operatorname{Ei}(-(\alpha-\beta) R)]- \tag{A.4}\\
&\left.-\mathrm{e}^{-\beta R} \ln R(\alpha-\beta)-\mathrm{e}^{\beta R} \operatorname{Ei}(-(\alpha+\beta) R)\right\}
\end{align*}
$$

Worthy to note that a function in square brackets is analytic when argument is zero. Integrals $\Gamma_{-1, m}$ are generated from $\Gamma_{-1,0}$ similar to (A.3):

$$
\begin{equation*}
\Gamma_{-1, m}(\alpha, \beta, R)=\left(-\frac{\partial}{\partial \beta}\right)^{m} \Gamma_{-1,0}(\alpha, \beta, R) \tag{A.5}
\end{equation*}
$$

The asymptotic series of exponential integral function encountered in (A.4) is [12]

$$
\operatorname{Ei}(z)=\mathrm{e}^{z} \sum_{n=0} \frac{n!}{(z)^{n+1}}, \quad-\operatorname{Ei}(-z)=\mathrm{e}^{-z} \sum_{n=0}(-)^{n} \frac{n!}{(z)^{n+1}}
$$

196 Tsogbayar Ts.

REFERENCES

1. Schrödinger E. // Ann. Phys. 1926. V.80. P. 437.
2. Wilson A. H. // Proc. Roy. Soc. A. 1928. V.118. P. 617.
3. Morse P. M., Stueckelberg E. C. G. // Phys. Rev. 1929. V.33. P. 932.
4. Hylleraas E. A. // Z. Phys. 1931. Bd.71. S. 739.
5. Baber W. G., Hassé H. R. // Proc. Cambridge. Phil. Soc. 1935. V. 31. P. 564.
6. Coulson G. A., Gillam G. M. // Proc. Roy. Soc. Edinb. A. 1947. V.62. P. 362.
7. Ovchinnikov A. A., Sukhanov A. D. // Dokl. AN. SSSR. 1964. V. 157. P. 1092.
8. Komarov I. V., Slavyanov S. Yu. // J. Phys. B. 1968. V. 1. P. 1066.
9. Power J. D. // Phil. Trans. Roy. Soc. London. 1973. V. 274. P. 663.
10. Tsogbayar Ts., Korobov V. I. // J. Chem. Phys. 2006. V. 125. P. 024308.
11. Korobov V. I., Tsogbayar Ts. // J. Phys. B: At. Mol. Opt. Phys. 2007. V. 40. P. 2661.
12. Gradshteyn I. S., Ryzhik I. M. Table of Integrals, Series and Products. M., 1963.

[^0]: ${ }^{1}$ Permanent address: Institute of Physics and Technology, Mongolian Academy of Sciences, Peace Avenue 54-B, 210651, Ulaanbaatar, Mongolia.

