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EULERÄHEISENBERGÄSCHWINGER LAGRANGIAN
FOR NON-ADIABATICALLY VARYING FIELDS

A. V. Zayakin1

M.V. Lomonosov Moscow State University, Moscow
Institute for Theoretical and Experimental Physics, Moscow

Non-perturbative particle production in external variable ˇelds is important in astrophysics. Although
a wide range of techniques exists for calculating production rate, none of them can handle exactly the
case of a strongly inhomogeneous ˇeld. Here an electric ˇeld with an abrupt switch-on is considered.
First, a standard semiclassical technique is used. Then, a scattering problem approach to this case is
developed, and time-dependent corrections to the effective EulerÄHeisenbergÄSchwinger Lagrangian are
calculated.
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INTRODUCTION: NON-LINEAR QED IN ASTROPHYSICS

Astrophysical applications require extension of non-perturbative QED particle production
rate calculation techniques beyond local ˇeld approximation to the case of strong inhomoge-
neous electromagnetic ˇelds, which cannot be treated adiabatically. Strong fast time-varying
(magnetic) ˇelds are observed in stellar collapse processes and magnetic stars. Intensive space-
inhomogeneous electromagnetic ˇelds are a feature of KerrÄNewman or ReissnerÄNordstrom
black holes.

Rufˇni and Damour [1] have argued that EulerÄHeisenbergÄSchwinger processes in KerrÄ
Newman gravitational background may account for gamma-ray bursts. According to [2], up to
50% of the energy of an extremal charged black hole may be contained in its electromagnetic
ˇeld. On the other hand, ˇeld of the charged black hole will quickly dissipate and form via
EulerÄHeisenbergÄSchwinger process a plasma of e+e− pairs. The pairs, in their turn, by
escaping the horizon vicinity and interacting with exterior baryonic matter will produce the
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burst of γ-radiation. Therefore, to study this possible mechanism of γ-production, one should
know the EulerÄHeisenberg Lagrangian for inhomogeneous ˇelds.

Extensive literature is devoted to EulerÄHeisenberg Lagrangians in variable ˇelds (for
a review see [3]). At present day, exact results are available for constant ˇeld, sinusoidal

standing wave E ∼ sin (Ωx) and singular pulse E ∼ 1
cosh (Ωx)2

(be x either temporal or

spatial coordinate), and for ˇelds, arbitrary depending on one of the light-cone coordinates
x± = x0 ±x1. Accurate quasiclassical results are available for ˇelds, depending smoothly on
one of their coordinates [4, 5].

A time-inhomogeneous external electric ˇeld will be considered, ®switched on¯ in a
theta-function manner

E3 = Eθ(x3) or E3 = Eθ(x0), (1)

E3 being the Ox3 directed component of the ˇeld, all other components being zero. One
would like to obtain an expression for particle production rate, or, equivalently, the EulerÄ
Heisenberg Lagrangian in this case. The ˇeld is obviously non-adiabatic, so the standard
®local¯ formula from [6] is inapplicable here. It is clear that one would hardly ˇnd a ˇeld
conˇguration of such a shape in nature, however, it could be a kind of ®toy model¯ to study
the inhomogeneity effects in more complicated cases.

The article is organized as follows. Section 1 reminds the reader some general ideas of
world-line instanton method and obtains the particle production rate quasiclassically up to
1-loop accuracy. The limited applicability of the semiclassical approach to our case is shown.
In Sec. 2 the particle production rate is recalculated by scattering approach and its temporal
dependence is investigated. In Sec. 3 a brief comparison of the methods is performed.

1. QUASICLASSICAL APPROACH

1.1. Instantonic Method. One can model the physical ˇnite-time switch-on as follows:

E3 =
E

2

(
1 +

Ωx0√
1 + (Ωx0)2

)
,

where Ω−1 is the characteristic switch-on duration. If Ω−1 � tCompt, one can use the
adiabatic approach, but one is interested in the reverse case. Finite switch-on time is intro-
duced not just for physical reasonability, but also for the possibility to smoothly analytically
continue it.

The instantonic method by Dunne, Schubert et al. [7, 8] is being applied to our problem.
The essence of the method is that the effective action of an electromagnetic ˇeld, given as
1-particle Feynman path integral

Seff [Aext] = −
+∞∫
0

dT

T
e−m2T

∫
dx(0)

∫
x(0)=x(T )=x(0)

Dx(τ) e−ST [x(τ),Aext]

can be expressed via a sum of exponents of classical actions of all closed-loop Euclidean
space-time (electron) paths in the external ˇeld. Here T is the world-line parameter. The
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integral over T becomes a sum of a discrete series of saddle points Tn, e.g., Tn =
πn

eE
in

case of constant ˇeld, where arbitrary natural number n has the meaning of winding number.
Integration over dx(0) means that one has to integrate over the initial point of the loop in
Euclidean space-time. ST [x(t), Aext] is quadratic action of a relativistic particle in the external
electromagnetic ˇeld Aext. The term ®world-line instanton¯ is used for the closed classical
paths satisfying the periodic boundary conditions in Euclidean space-time. Following this
analog, the sum over n in this case directly corresponds to the sum of kinkÄantikink pairs in
φ4 theory.

For details of the method see the two cited articles by Dunne, Schubert et al. For derivation
of relativistic particle path integral with quadratic action see [9]. In fact, this method can be
thought of as a generalization of the WKB method for multiloop trajectories.

1.2. Leading Exponent. Effective QED Lagrangian is generally expressed as a ®sum over
instantonic paths¯

ImLeff =
∑

fn e−Sn . (2)

Here Sn is an n-instantonic classical action; fn is the corresponding preexponential factor.
For example, in constant ˇeld case an n-instantonic trajectory yields integral of motion

a =
2πm2n

eE
, action Sn =

m2πn

eE
, law of motion x4(τ) =

m

eE
sin (2πnτ), preexponential

factor fn =
e2E2

16π3

(−1)n+1

n2
(in scalar QED). Trajectories are simply circles in (x3, x4) plane,

wound around n times by the particle.
In the discussed ®θ-switch-on¯ case, the situation is more complicated. Generally, in

variable ˇelds simultaneous motion in the Euclidean and Minkowskian regions takes place.
The contour of this motion should be chosen so that world-line parameter τ is real. Therefore,
special care should be taken to make sure that the formula (2) is applicable.

In our case, the Euclidean-time vector-potential looks like

A3 =
E

2Ω

(
iΩx4 +

√
1 − (Ωx4)2

)
.

The law of motion x4(τ), where τ is world-line parameter, is given by the following integral:

τ − τ0 =
1
a

x4∫
x4
(0)

dx′4√√√√1 − e2E2

4m2

(
x′4 − i

√
1 − Ω2(x′4)2

Ω

)2
.

The x3(τ) can be expressed in terms of x4(τ) via equations of motion. Here a is e.o.m.
integral, (ẋ3)2 + (ẋ4)2 = a2, which should be expressed via winding number n according to
the condition

1
2n

=
1
a

x4
max∫

x4
min

dx′4√√√√1 − e2E2

4m2

(
x′4 − i

√
1 − Ω2(x′4)2

Ω

)2
,

where x4
max, x4

min Å limits of the classically forbidden region.
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In this particular case, due to the convenient choice of the approximating smooth function,
in fact, a wholly Euclidean ˇnite trajectory can be found with periodical boundary conditions
imposed thereupon in the range

1 < Ωx4 <
1
γ

. (3)

Thus, we have the proper integration limits x4
max, x4

min and can apply (2) straightforwardly
provided γ > 1. For γ < 1 it is impossible to apply this technique. The trajectories can be
seen in Fig. 1.

Fig. 1. ®Instantonic¯ paths in the Euclidean plane (x3, x4). The faster the ˇeld is turned on, the smaller
the loop is

Action on a path with winding number n is given by the formula

Sn = 2nm

x4
max∫

x4
min

dx′4

√√√√1 − e2E2

4m2

(
x′4 − i

√
1 − Ω2(x′4)2

Ω

)2

.

Explicitly,

S =
nm2

eE
g(γ),

where information on γ-dependence is contained in

g(γ) = π

[(
1 +

1
2γ2

)
− 3

π

1
γ

√
1 − 1

4γ2

]
.

Here γ =
mΩ
eE

has the meaning of Keldysh parameter for this problem. This result contains

no temporal dynamics (i.e., no dependence on time passed after ˇeld switch-on), which is
an intrinsic property of the method [7]. In Fig. 2 one can see the dependence of S on γ.
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Fig. 2. Action versus Keldysh parameter. For com-
parison, we show γ-dependence of the 1-instantonic

action for a singular pulse ˇeld E ∼ 1

cosh2 Ωt
, a si-

nusoidal ˇeld E ∼ sin (Ωt) and the case studied in

the present paper E ∼
(

1 +
Ωx0√

1 + (Ωx0)2

)

Note, the plot starts with γ = 1, because g(γ) is undeˇned below it in our case. Thus, it is
impossible to compare the result with constant ˇeld case at γ → 0.

It may seem strange that asymptotically for very large Keldysh parameter γ the situation
is identical to constant ˇeld case, whereas smooth ˇeld switch-on is felt in a wider range.
However, one should remember that less smooth the ˇeld is, less applicable quasiclassical
method becomes in general. Therefore, this unnatural behaviour of g(γ) should be thought
of as a manifestation of inapplicability of semiclassical methods to this case. In the next
subsection the preexponential factor is calculated within the same approximation, however, it
is clear that one should use time-dependent formalism of Sec. 2 if it is necessary to deal with
singular ˇelds.

1.3. 1-Loop Corrections. The instantonic method allows us to express the 1-loop de-
terminant by a simple integral transformation of the ˇeld. From formula (3.24) in [8] one

Fig. 3. Exponential prefactor versus

Keldysh parameter

can make sure that for scalar QED, whatever the
dependence of A on x4 is, the preexponential
for n-instantonic solution is simply and universally
expressed in terms of the preexponential for the
1-instantonic solution

fn =
(−1)n+1

n2
f1. (4)

From formulae (3.44), (3.45) in [8] with integration
limits modiˇed according to (3) one obtains for the
preexponential

f1(γ) =
−2

√
2
√

γ2 − 1 γ3√
γ2 − 1 − γ2 Arcsec (γ)

. (5)

The plot of this function versus Keldysh parameter is
depicted in Fig. 3. One can see again that this quantity
tends to the constant ˇeld limit at γ → ∞.

The ˇnal result is thus for scalar QED

ImLeff = f1(γ)
∞∑

n=1

(−1)n+1

n2
exp
(
−n

m2

eE
g(γ)

)
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with g(γ) = and f1 given in (5). It is easily generalized for fermionic theories. As for
the action, so for the prefactor here, no x0 dependence has been obtained due to the special
feature of the semiclassical method as it yields the particle production rate already integrated
over x0. The result of this section is that for ˇelds switched on fast enough constant ˇeld
approximation will work in the long run (i.e., at x0 → ∞) better than for a slowly varying
ˇeld. The latter, however, can be treated within an adiabatic approximation and is out of our
interest.

2. SCATTERING APPROACH

The instantonic method has a clear physical interpretation and is easy to implement,
however, it has some disadvantages. As already mentioned, the x0 dependence of the ˇnal
result is absorbed into T -integration. In fact, the quantity obtained in the previous section
disregards all transition processes. What is calculated may be thought of as an average particle
creation rate at sufˇciently large times. Then it is obvious that the asymptotics should agree
with constant ˇeld case. Below a different treatment of the same problem is presented. It will
allow us to observe transition phenomena in this system. By the way, no regularization of the
ˇeld in scattering approach will be necessary, i.e., one can work directly with θ-function-like
ˇeld, imposing matching conditions on the boundary.

One may start with the familiar derivation, found in textbooks [10,11]

−iΔSeff = ln det (iγμ∂μ − eγμAμ − m) − ln det (iγμ∂μ − m) =

=
1
2

[
ln det

(
(i∂ − eA)2 +

e

2
σμνFμν − m2

)
− ln det

(
(i∂)2 − m2

)]
.

Then, s-representation for the determinant is introduced; tr is taken over Dirac indices

− iΔSeff =
1
2

∫
d4x

∫
ds

s
e−im2s×

× tr
(
〈x| exp

(
is
(
(P̂ − eA)2 +

e

2
σμνFμν

))
|x〉 − 〈x|eiP̂ 2 |x〉

)
;

after inserting unity decomposition and taking Dirac matrix trace, one gets

− iΔSeff =
1
2

∫
d4x

∫
ds

s
e−im2s d4p d4p′

(2π)4
ei(p−p′)x×

×
(
4θ(x0) cosh eE0s〈x|eis(P̂−eA)2 |x〉 − 4〈x|eisP̂ 2 |x〉

)
,

where P̂i are momenta operators. Hence, after taking integrals in momentum space

=
∫

d4x
1

8π2i

∫
ds

s2
e−im2s×

×
[
θ(x0) cosh eE0s

1
π

∫
dp3dp0dp ′

0 ei(p0−p ′
0 )x0

〈
p0

∣∣∣eis(P̂ 2
0 −(p3−eE0x0θ(x0))

2)
∣∣∣p ′

0

〉
− 1

s

]
.
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Thus, effective Lagrangian correction at x0 > 0 is given by

ΔLeff =
1

8π2

∫
ds e−im2s

s2

[
eE0 cosh eE0s I(x0, s) −

1
s
− 1

3
e2E2

0s

]
.

We remind here the standard EulerÄHeisenberg Lagrangian

ΔLeff =
1

8π2

∫
ds e−im2s

s2

[
eE0 ctanh eE0s −

1
s
− 1

3
e2E2

0s

]

(the last term is subtracted in both expressions due to renormalization prescription). Our main
goal is to calculate the term

I(x0, s) =
1

πeE0

∫
dp3dp0dp ′

0 exp
(

i(p0 − p ′
0 )
(

x0 −
p3

eE0

))
×

×
〈

p0| exp
(

is

(
P̂ 2

0 − e2E2
0x2

0θ

(
x0 +

p3

eE0

)
− p2

3θ

(
−x0 −

p3

eE0

)))
|p ′

0

〉

and to compare it with the original
1

sinh eE0s
for constant ˇeld. This calculation is performed

by solving 1-dimensional re	ection problem of quantum mechanics, assuming the operator
in the exponent to be the ®effective Hamiltonian¯. We note here that pair production was
ˇrst described in a similar manner in terms of 1-dimensional oscillator in [12]. The time
dependence would have vanished, if the potential of this Hamiltonian had simply been E2x2

0,
as it is in the standard case. The matrix element would be diagonal then, which would
eliminate time-dependence at all. However, a piecewise-given potential is treated here, thus
x0 dependence persists.

This expression is being analytically continued by susbtituting E0 → iE0, p3 → ip3 and
one considers

IAn(x0, s) =
1

πeE0

∫
dp3dp0dp ′

0 exp
(

i(p0 − p ′
0 )
(

x0 −
p3

eE0

))
×

×
〈

p0

∣∣∣∣∣ exp
(

is

(
P̂ 2

0 + e2E2x2
0θ

(
x0 +

p3

eE0

)
+ p2

3θ

(
−x0 −

p3

eE0

))) ∣∣∣∣∣p ′
0

〉
.

Thus, a positive-deˇnite Hamiltonian has been obtained, which makes re	ection problem
well-posed. ®Reverse¯ analytical continuation will necessary to be performed at the end of
the calculation to return to the original physical domain.

Let us introduce dimensionless variables x̃ = x
√

eE0, p̃i =
pi√
eE0

, ε̃ =
ε

eE0
, s̃ = eE0s

and write down IAn(x0, s) in terms of them

IAn(x̃0, s̃) =
1
π

∫
dp̃3dp̃0dp̃′0 ei(p̃0−p̃′

0)(x̃0−p̃3)×

×
〈

p̃0

∣∣∣∣∣ exp
(
is̃(P̂ 2

0 + x̃2
0θ(x̃0 − p̃3) + p̃2

3θ(−x̃0 − p̃3))
) ∣∣∣∣∣p̃′0

〉
.

Further tilde sign is going to be omitted.
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Thus, the problem has now been reduced to studying 1-dimensional Schréodinger equa-

tion with Hamiltonian Ĥ =
1
2
P̂ 2

0 + V (x0), its potential being V (x0) =
1
2
(
x2

0θ(x0 + p3)+

p2
3θ(−x0 − p3)

)
.

Now the matrix element of operator e−2isĤ = eis(P̂ 2
0 +x2

0θ(x0+p3)+p2
3θ(−x0−p3)) will be

calculated. Unity expansion in terms of its eigenfunctions is used |ψε(x)〉, deˇned by equation
Ĥ|ψε〉 = ε|ψε〉. The spectrum has bound states with energies 0 < εn < p2

3/2, and free states
with energies ε > p2

3/2. For free states one has to solve re	ection problem, so that one can
ˇnd the density of states expressed in terms of phase shift [9, p. 1120]

∂n

∂ε
=

1
π

∂δ

∂ε
,

and δ is expressed in terms of logarithmic derivatives

L(p3, ε) =
∂ ln ψε(x)

∂x

∣∣∣∣
x=−p3

of wavefunctions in the matching point:

δ = tan−1 L

k
− p3.

Therefore, the analytically-continued function IAn becomes

IAn(x0, s) =
1
π

∫
dp3dp0dp ′

0 ei(p0−p ′
0 )(x0−p3)×

×

⎛
⎝∫ dε〈p0|ψε〉〈ψε|p ′

0 〉
∂n

∂ε
e2isε +

∑
0<εn<p2

3/2

〈p0|ψεn〉〈ψεn |p ′
0 〉 e2isε

⎞
⎠ ,

which, after inserting explicit integral representation of matrix elements 〈p0|ψε|p ′
0 〉, simpli-

ˇes to

2
∫

dp3

⎛
⎜⎝ ∑

0<εn<p2
3/2

|ψεn(x0 − p3)|2 e2iεns +

+∞∫
p2
3/2

dε|ψε(x0 − p3)|2
∂n

∂ε
e2iεs

⎞
⎟⎠ .

This expression can be split into three parts,

IAn(x0, s) = IAn
1 (x0, s) + IAn

2 (x0, s) + IAn
3 (x0, s), (6)

the ˇrst one being the contribution of bound states, the two other ones coming from free
spectrum. The contribution of free states has been separated into two parts because of the
special feature of the potential: for p3 > 0 free spectrum has p2

3/2 as the lowest energy level,

IAn
2 (x0, s) =

4
π

+∞∫
0

dp3

+∞∫
p2
3

dε√
ε
×

× exp
(

2is

(
ε +

p2
3

2

)) −L

(
p3, ε +

p2
3

2

)
+ 2εL′

ε

(
p3, ε +

p2
3

2

)

L

(
p3, ε +

p2
3

2

)2

+ 2ε

∣∣∣∣ψε+
p2
3
2

(x0 − p3)
∣∣∣∣
2

,



EulerÄHeisenbergÄSchwinger Lagrangian for Non-Adiabatically Varying Fields 403

whereas for p3 < 0 free spectrum starts already with zero

IAn
3 (x0, s) =

4
π

0∫
−∞

dp3

+∞∫
0

dε√
ε

e2isε |ψε(x0 − p3)|2
−L(p3, ε) + 2εL′

ε(p3, ε)
L(p3, ε)2 + 2ε

.

Later, we are going to make sure that the contributions of I2 and I3 are negligible. The
leading contribution, i.e., sum over bound states in the I1 is

IAn
1 (x0, s) = 2

+∞∫
0

dp3

∑
0<εn<p2

3/2

|ψεn(x0 − p3)|2 e2isεn ,

which can be regrouped as

IAn(x0, s) = 2
+∞∑
n=0

exp
(

2is

(
n +

1
2

)) +∞∫
√

2n+1

dp3|ψεn(x0 − p3)|2.

Here one makes use of the fact that bound states eigenfunctions and eigenvalues of this prob-
lem are very close to those of harmonic oscillator. The difference is essential only between
asymptotics of wavefunctions1. But this region does not give any important contributions to
IAn(x0, s). Thus, further simpliˇcation arises, as the complicated wavefunctions ψε(x0) can
be traded for simple Hermitian polynomials

IAn
1 (x0, s) = 2

+∞∑
n=0

exp
(

2is

(
n +

1
2

)) +∞∫
√

2n+1

Hn(p3 − x0)2 e−(p3−x0)
2

√
π2nn!

,

which becomes

IAn
1 (x0, s) = 2

+∞∑
n=0

exp
(

2is

(
n +

1
2

))⎛⎜⎝1 −
+∞∫

x0−
√

2n+1

Hn(p3)2 e−p2
3

√
π2nn!

⎞
⎟⎠ =

= − 1
i sin s

− 2
+∞∑
n=0

exp
(

2is

(
n +

1
2

))
Hn(p3)2 e−p2

3

√
π2nn!

.

One can interprete this formula intuitively in the following way: in constant ˇeld all energy
levels contribute to the trace of the operator, whereas, if the ˇeld is turned on in a moment, the
levels are also ®switched on¯ consequently, dependent on the value of transversal momentum
of the wavefunction. This is, to our understanding, the difference between constant ˇeld and
switched-on ˇeld case. By doing the reverse analytic continuation one obtains

I1 =
1

sinh s
− 2

+∞∑
n=0

exp
(
−2s

(
n +

1
2

)) ∞∫
x0−

√
2n+1

dp3
Hn(p3)2 e−p2

3

√
π2nn!

. (7)

1O(xα e−x2/2), x → ±∞-type behaviour for harmonic oscillator, whereas for exact solution of our potential

asymptotics of type O(xα e−x), x → −∞ and O(xα e−x2
), x → +∞.
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The last equation makes it possiblle to separate the
1

sinh s
term, which is already present in

the constant ˇeld case, and the second term, which represents the non-trivial contribution of
abrupt ˇeld switch-on to EulerÄHeisenberg Lagrangian. Here we stress that this sum is an
exact expression, which is not a perturbation series in E or in x0, but incorporates all possible
non-linear effects in 1-loop vacuum QED. It is obvious that the sum in (7) tends to zero, as
x0 → ∞, i.e., effects of ˇeld switch-on gradually die out and one is left with the standard
expression.

2.1. Numerical Results. Evaluating (7) is easy, as it contains just 1-dimensional numerical
integration. One easily obtains the following asymptotic behaviour, dependent on s

ΔI1(x0, s) =

⎧⎨
⎩

η(x0)
s

, 0.3 < s < 1,

e−α2(x0)s−β2(x0), 1 < s < ∞.

The functions αi(x0), βi(x0), η(x0) have the following simple approximation, obtained nu-
merically in the region 0 < x0 < 4:

η(x0) = 0.06 − 0.01x0,

α2(x0) = 0.44x0 + 0.4,

β2 = 0.40x0 − 1.57.

Thus, it follows that the typical dimensionless time x0, during which nonstationary effects
are seen, is of the order of magnitude x0 ∼ 1. Restoring dimensionful time, the typical
®nonstationarity time¯

τNS =
√

eE0

is obtained.

3. DISCUSSION

Our main result is a simple formula for a time-dependent non-perturbative correction
to EulerÄHeisenberg Lagrangian, which is valid in case of θ-function external ˇeld time-
dependence

δLeff = −2θ(x0)
∫

ds

s2
exp
(
−i

m2

eE0
s

)
×

×
+∞∑
n=0

exp
(
−2s

(
n +

1
2

)) ∞∫
x0−

√
2n+1

dp3
Hn(p3)2 e−p2

3

√
π2nn!

. (8)

Free spectrum contributions have been neglected here for simple reasons. It is stressed once
more that (8) has a very simple physical interpretation: abrupt switch-on of the ˇeld excites
the oscillators of the Schréodinger operator in a non-uniform way. This makes the effective
Lagrangian time-dependent. In fact, what has been calculated here can be thought of (in a
somewhat loose language) as ®vacuum polarizability rate¯. Here one should agree that, in
fact, the most self-consistent treatment of such a system would have been performed in the
framework of non-equilibrium thermal QED. So, the result produced here should be thought
of reference point for the true thermal QFT [9] treatment.
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Another important result of this paper is giving the 1-loop semiclassical result for particle
production rate in case of smooth step-like ˇeld switch-on. Its limited validity in case of
very inhomogeneous ˇeld has already been discussed above. It can be believed that both
the semiclassical result and the time-dependent ln det computation will help to understand
the complicated astrophysical processes, especially those taking place around charged black
holes. In particular, it can be possible that the two different physical processes Å particle
production from vacuum by a strong EM ˇeld and Hawking radiation Å can be treated within
the same formalism and we are going to extend our studies towards this more complicated
case of two competing processes.
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