
�¨¸Ó³ ¢ �—�Ÿ. 2008. ’. 5, º3(145). ‘. 289Ä293

Š�Œ�œ�’…�	›… ’…•	�‹�ƒˆˆ ‚ ”ˆ‡ˆŠ…

SOFTWARE FOR NUMERICAL SIMULATIONS
IN THE FIELD OF QUANTUM TECHNOLOGIES BASED

ON PARALLEL PROGRAMMING
H.H. Adamyan a, N. H. Adamyan b, N. T.Gevorgyan a,1,

T. V. Gevorgyan a,b, G. Yu. Kryuchkyan a,b,2

a Institute for Physical Research, National Academy of Sciences, Ashtarak-2, Armenia
b Yerevan State University, Yerevan, Armenia

We provide a software package for numerical simulations and modeling of complex quantum systems
in the presence of dissipation and decoherence for a wide class of problems in the ˇeld of quantum
technologies. This software is based on the method of quantum trajectories usually used for calculations
of the density matrix. An important part of this toolkit is the universal user interface which is based
on the TCL scripting language (Tool Command Language). It is elaborated in such a manner that
the system description and system parameters should not be included in the source code. The core is
implemented as a generic set of C++ classes which can be efˇciently reused for modeling of a wide
range of photonic systems. The code has been written so that it can facilitate optimization of the
performance without breaking the object-orientedness of the design. We demonstrate that this software
package is very useful for high-performance parallel calculations on the cluster.

�·¥¤¸É ¢²¥´ ¶ ±¥É ¶·μ£· ³³ ¤²Ö ¶·μ¢¥¤¥´¨Ö Î¨¸²¥´´ÒÌ ¸¨³Ê²ÖÍ¨° ¨ ³μ¤¥²¨·μ¢ ´¨Ö ¸²μ¦-
´ÒÌ ±¢ ´Éμ¢ÒÌ ¸¨¸É¥³ ¶·¨ ´ ²¨Î¨¨ ¤¨¸¸¨¶ Í¨¨ ¨ ´ ·ÊÏ¥´¨¨ ±μ£¥·¥´É´μ¸É¨ ¤²Ö Ï¨·μ±μ£μ ±² ¸¸
§ ¤ Î ¢ ³¨·¥ ±¢ ´Éμ¢ÒÌ É¥Ì´μ²μ£¨°. �·μ£· ³³ μ¸´μ¢ ´ ´ ³¥Éμ¤¥ ±¢ ´Éμ¢ÒÌ ¶ÊÉ¥°, μ¡ÒÎ´μ
¨¸¶μ²Ó§Ê¥³μ³ ¤²Ö ¢ÒÎ¨¸²¥´¨Ö ³ É·¨ÍÒ ¶²μÉ´μ¸É¨. ‚ ¦´μ° Î ¸ÉÓÕ ¤ ´´μ£μ ¶·μ£· ³³´μ£μ μ¡¥¸-
¶¥Î¥´¨Ö Ö¢²Ö¥É¸Ö Ê´¨¢¥·¸ ²Ó´Ò° ¶μ²Ó§μ¢ É¥²Ó¸±¨° ¨´É¥·Ë¥°¸, μ¸´μ¢ ´´Ò° ´ Ö§Ò±¥ TCL. �´
· §· ¡μÉ ´ É ±¨³ μ¡· §μ³, ÎÉμ ´¥É ´¥μ¡Ìμ¤¨³μ¸É¨ ¢±²ÕÎ ÉÓ μ¶¨¸ ´¨¥ ¸¨¸É¥³Ò ¨ ¥¥ ¶ · ³¥É·μ¢ ¢
¨¸Ìμ¤´ÊÕ ¶·μ£· ³³Ê. Ÿ¤·μ § ¶Ê¸± ¥É¸Ö ± ± ´ ¡μ· C++ ±² ¸¸μ¢, ±μÉμ·Ò¥ ³μ¦´μ ÔËË¥±É¨¢´μ ¨¸-
¶μ²Ó§μ¢ ÉÓ ¸´μ¢ ¤²Ö ³μ¤¥²¨·μ¢ ´¨Ö ËμÉμ´´ÒÌ ¸¨¸É¥³ ¢ Ï¨·μ±μ³ ¤¨ ¶ §μ´¥. �·μ£· ³³ ´ ¶¨¸ ´
É ±¨³ μ¡· §μ³, ÎÉμ ³μ¦´μ ¶·μ¢μ¤¨ÉÓ μ¶É¨³¨§ Í¨Õ ¶·μ¨§¢μ¤¨É¥²Ó´μ¸É¨ ¡¥§ ´ ·ÊÏ¥´¨Ö μ¡Ñ¥±É´μ-
μ·¨¥´É¨·μ¢ ´´μ£μ Ì · ±É¥· ³μ¤¥²¨. �μ± § ´μ, ÎÉμ ¤ ´´Ò° ¶·μ£· ³³´Ò° ¶ ±¥É ¢¥¸Ó³ ¶μ²¥§¥´
¶·¨ ¶·μ¢¥¤¥´¨¨ ¶ · ²²¥²Ó´ÒÌ ¢ÒÎ¨¸²¥´¨° ´ ±² ¸É¥·¥.

PACS: 02.70.-c; 03.67.Lx

INTRODUCTION

Quantum state diffusion (QSD) is an efˇcient method of representing and computing the
time evolution of quantum systems in the presence of dissipation and decoherence [1]. In
most quantum systems, computation using QSD is orders of magnitude more economical in

1E-mail: ngevorg@server.physdep.r.am
2E-mail: gkryuchk@server.physdep.r.am

290 Adamyan H.H. et al.

terms of computer storage space and computation time than numerical solution of master
equation for the density operator. According to this method the density operator is calculated
as the ensemble mean

ρ(t) = M (|ψξ〉〈ψξ|) = lim
N→∞

1
N

N∑

ξ

|ψξ(t)〉〈ψξ(t)| (1)

over stochastic states |ψξ(t)〉 which describe evolution of the quantum system along a quantum
trajectory. Particularly, the corresponding equation of motion for photonic systems is

|dψξ〉 = − i

�
H |ψξ〉dt − 1

2
(
L+L − 2〈L+〉L + 〈L〉〈L+〉

)
|ψξ〉dt + (L − 〈L〉) |ψξ〉dξ, (2)

where H is a reference system Hamiltonian; � is the Planck constant; L =
√

γa is the
Lindblad operator with γ being a dissipation rate; a is the annihilation photonic operator.
Here ξ indicates the dependence on the stochastic process and the complex Wiener variables
dξ satisfy the fundamental properties

M(dξ) = 0, M(dξ, dξ) = 0, M(dξ, dξ∗) = dt. (3)

As we see, in this method each trajectory can be evaluated independently of the others. This
makes application of a cluster more preferable for computations.

We present software for numerical simulations of a wide class of complex quantum
systems including elaboration of photonic devices using QSD and parallel calculations. This
package has been arranged for high performed calculation on arm-cluster and allows us to
perform calculations in reasonable time. The part of this activity has involved elaboration
of the user interface for concretization of the quantum systems of interest as well as the
core programs. This package has recently been applied for elaboration of new devices for
long-distance quantum communication, for investigation of quantum dissipative chaos, and
quantum critical phenomena [2Ä7]. Below, we describe the software architecture (Sec. 1), the
user interface (Sec. 2), and peculiarities of parallel computation (Sec. 3).

1. SOFTWARE ARCHITECTURE

The software has several internal layers. A core layer is a set of template classes repre-
senting Hermitian space objects. These classes include such objects as state vector, different
operator implementations, density matrix, etc. The number of mod's (number of freedom of
the system) is also parameterized. A layer above contains named objects of state vectors, op-
erators, numerical constants and variables, functions. This layer also includes some numerical
simulation algorithms, based on named objects, one of such algorithms in QSD method. De-
ˇned variables, constants and functions can be used while deˇning operators. A layer above
is a User Interface (UI). The UI is based on TCL, a well-known scripting language. TCL is
widely used in scientiˇc and engineering applications. It provides simple and easy interface
as well as has advanced features. For simple computations a TCL programming knowledge
is not required, a required system description can be built based on provided templates and
examples.

Software for Numerical Simulations in the Field of Quantum Technologies 291

1.1. Operators. Operators deˇned in the software as described above exist in two layers.
The lower layer deˇnes optimized template classed for built-in operators. These classes
include: photon creation; photon annihilation; photon number; external pump operators.

Higher level operators are being built as mathematical expressions of built-in operators,
functions and variables. Using operators which contain a lot of mathematical operations may
decrease efˇciency and increase runtime. Runtime of a simulation is critical for complex
systems. For advanced users there are ways of avoiding this. One can deˇne the desired
operator in lower level of architecture and do optimizations there. A way of doing this is
modiˇcations/additions to source code and recompilation of the software, the other way is a
creation of a shared library based on public headers and load as a plug-in into the system, it
can easily be done by TCL ®load¯ command. After this another operator can be built based
on new deˇned operator.

1.2. Variables and Functions. Each system for simulation has some parameters, which
are being represented as constants in operators. The description of a system may also depend
on time. Time is also exported as a variable and can be referred to from within operators.
Each algorithm which does time evaluation simulation updates this variable on each step. Also
it is possible to deˇne functions as named expressions. While constructing expressions some
built-in functions may be used, such as sin, cos, exp, etc. It is also possible to deˇne additional
functions through public headers by constructing and loading shared libraries, essentially in
the same way as for operators described in Subsec. 1.1.

2. USER INTERFACE

As noted above, user interface is based on TCL scripting language. A UI layer provides
a set of classes for registration of commands, option parsing and error handling, as well as
a set of commands for basic operation. This set includes commands for deˇning functional
and operator expression, state vectors management, simulation algorithms.

The set of classes are kind of C++ wrapper around C level TCL API (Application Pro-
gramming Interface). It provides easy and type-based parsing of command options. It is
also possible to deˇne user commands based on either this C++ API or direct TCL API. The
deˇned commands can be integrated by loading shared libraries in the same way as operators
and functions.

2.1. Basic Set of Commands. Here are provided basic commands in more detail.
2.1.1. Deˇned operator. Creates an instance of a built-in operator giving a name.
Command: deˇne operator
Summary: Deˇnes a named operator of built-in type.
Syntax: deˇne operator <name> type <type> -mode <int>
Example: deˇne operator P -type creation -mode 1
Deˇnes a ˇrst mod creation operator named P.
2.1.2. Feval. Evaluates given string expression. This command can be used for creation

of named expressions (functions), for deˇning constants and for printing values.
Command: feval
Summary: Evaluates given expression.
Syntax: feval <string>
Example: feval {omega = 0.1; pump = 1; F0 = 1.5;}

292 Adamyan H.H. et al.

This example deˇnes a few different constants.
feval {F t = F0 * cos (omega * t); } Deˇnes a time-dependent function.
2.1.3. Oeval. Evaluates given string operator expression. While parsing new names are

assumed as operator names, while values can refer to operator or expression.
Command: oeval
Summary: Evaluates given operator expression.
Syntax: oeval <string>
Example: oeval { H = omega*N + pump * (A + P) }
This expression deˇnes operator named ®H¯ referring to operators N, A and P, and

expressions/constants omega and pump.
2.1.4. Deˇne state. Creates a state vector with given name of given size.
Command: deˇne state
Summary: Creates a state vector.
Syntax: deˇne state <string> -size <list of int>
Example: deˇne state I -size 100
Creates a state vector named ®I¯ of size 100. In this case the number of modes is 1.
2.1.5. qsd. This command executes Quantum State Diffusion algorithm.
Command: sqa
Summary: Executes Quantum State Diffusion algorithm.
Syntax: qsd -Hamiltonian <string> -Linblads <list of strings> -nTraj <int> -timeVar

<string> -init <string> -state preˇx <string>
Example: qsd -Hamiltonian H -Linblads A -init I -nTraj 500 -state preˇx ªhar ª

2.2. A Simple Example. Here is a simple example of a TCL script which executes QSD
for harmonic system, and exports mean values of number operator to a ˇle.

deˇne operator A -type annihilation -mode 1
deˇne operator P -type creation -mode 1
deˇne state I -size 100
feval {omega = 0.1; pump = 1; tStart = 0; tEnd = 5; dt = 0.01;}
oeval { N = P * A }
oeval { H = omega*N + pump * (A + P) }
set preˇx har
qsd -Hamiltonian H -Linblads A -init I -nTraj 500 -state preˇx$preˇx
export states -state preˇx $preˇx -operator N

3. OPTIMIZATIONS (PARALLEL COMPUTATION)

Numerical simulations for system which have more than one dimension (number of free-
dom) may take long time. For this type of systems a state vector contains about 50000 complex
numbers which is about of the system, state vector may have a big size. As a result, a sim-
ulation of each trajectory for QSD takes minutes. And since at least 1000Ä5000 trajectories
are required to get smooth results a full simulation takes days. To reduce execution time,
a version of program is developed which runs on cluster and uses advantages of parallel
programming. QSD algorithm simulates the same equation many times with the same ini-
tial state and exactly the same parameters. After simulation results from different runs are

Software for Numerical Simulations in the Field of Quantum Technologies 293

merged. While working in parallel mode an equal number of trajectories are being simulated
on different nodes of the cluster. In this way a runtime of the simulation can be reduced
about many times, which explicitly depends on the number of available nodes in the cluster.

CONCLUSION

A program for numerical simulations in the ˇeld of quantum technologies is developed.
The program interaction is built on user interface based on the scripting language TCL well
known in technical ˇeld. The program comes with a set of basic TCL commands, but also is
open for adding user deˇned operations. It has a set of built-in operators and also provides
an interface for deˇning complex operators. For this a TCL interface and C++ interface
are provided. It also provides interface for adding additional mathematical functions that
use deˇned TCL commands. For optimal computations the program also supports parallel
programming.

Acknowledgements. This work was supported by INTAS Grant 04-77-7289.

REFERENCES

1. Percival I. C. Quantum State Diffusion. Cambridge Univ. Press, 2000.

2. Adamyan H.H., Manvelyan S. B., Kryuchkyan G. Yu. Stochastic Resonance in Quantum Trajectories
for an Anharmonic Oscillator // Phys. Rev. A. 2001. V. 63. P. 022102.

3. Adamyan H.H., Manvelyan S. B., Kryuchkyan G. Yu. Chaos in a Double Driven Dissipative Non-
linear Oscillator // Phys. Rev. E. 2001. V. 64. P. 046219.

4. Kryuchkyan G. Yu., Manvelyan S. B. Quantum Dissipative Chaos in the Statistics of Excitation
Numbers // Phys. Rev. Lett. 2002. V. 88. P. 09410.

5. Kryuchkyan G. Yu., Manvelyan S. B. Sub-Poissonian Statistics in Order-to-Chaos Transition // Phys.
Rev. A. 2003. V. 68. P. 0138114.

6. Adamyan H.H., Kryuchkyan G. Yu. Continuous Variable Entanglement of Phase Locked Light
Beams // Phys. Rev. A. 2004. V. 69. P. 053814.

7. Adamyan H.H. et al. Quadrature Entanglement and Photon Correlations in the Presence of Phase-
Locking // Phys. Rev. A. 2006. V. 73. P. 033810.

