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CONTEMPORARY METHODS OF DATA PROCESSING
IN EXPERIMENTAL PHYSICS

G. Ososkov1

Joint Institute for Nuclear Research, Dubna

Three basic methods that are extensively applied at JINR to process recent experimental data are
reviewed, namely, robust methods of mathematical statistics, artiˇcial neural networks and wavelet
analysis. This review primarily covers studies in which scientists from the Laboratory of Information
Technologies participated, in particular, in collaborations with the leading centers of physics, such as
CERN, DESY, BNL, GSI, etc. The main principles of the reviewed methods and the most useful and
promising examples of their applications are discussed.
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INTRODUCTION

Advances in theoretical physics in the last decades gave rise to revolution in experimental
high energy physics (HEP). Now HEP began to use colliders operating in TeV-energy range,
such as RHIC at BNL, and LHC, which is to be commissioned at CERN. Therefore, the
facilities and the detection technique drastically changed due to recent achievements in the
electronics, distributed computing systems, and object-oriented programming and the explo-
sive expansion of Internet. The Joint Institute for Nuclear Research participates in a number
of large HEP experiments, being carried out and forthcoming, in leading world nuclear re-
search centers. Advanced electronic detectors Å proportional, time projection, and silicon
chambers, drift tubes, RICH detectors of Cherenkov radiation rings, and various calorimeters
are in use in these experiments.

The particular features of the data from these detectors are as follows: recognized patterns
are discrete and have complex texture, data arrive with extremely high rate; the number of
background events, which are similar to good events, is larger than the number of the latter
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events by several orders of magnitude; noise counts are numerous and correlated; very high
multiplicity of objects (tracks, Cherenkov radiation rings, showers) to be recognized in each
event.

The basic requirements on data processing in current experiments are maximum speed of
computing in combination with the highest attainable accuracy and high efˇciency of methods
of estimating physical parameters interesting for experimentalists. The implementation of
these requirements under the above conditions demanded a new HEP data analysis where
we are faced not with usual applied statistics, but with special mass-production statistics.
Keywords are:

Å data processing in automatic mode with minimum of human intervention;

Å need in very fast algorithms of

• parameter estimating and
• hypothesis testing;

Å data contamination due to

• noise measurements;
• measurements from neighboring objects.

In order to achieve that, new mathematical means are needed, in particular:
Å robust approach based fast algorithms;
Å neural networks;
Å wavelet analysis for data ˇltering and jet search.
In this paper the main principles of the reviewed methods and the most useful and

promising examples of their applications are expounded. It is based on the earlier survey [1]
and more recent publications [2Ä7].

1. ROBUST ESTIMATES FOR HEAVY CONTAMINATED SAMPLES

As an example of the robust approach the elastic template method (ETM) can be taken. It
has been successfully applied for CERES RICH ring recognition [8] and STAR TPC tracking
in 1998 [9]. Its idea was: knowing a parametric form of curves to be recognized, accomplish
both stages, a curve recognition and ˇtting, simultaneously. Gyulassy and Harlander (G&H)
realized this idea (see refs. in [9]) by varying track equation parameters so that being bent
with their variations, a template, i.e., a curve described by this equation, passed as close as
possible to the points measured in a track. G&H proposed as a physical interpretation of their
idea the interaction between

• the positively charged template distributed with the density ρT (r),
• negatively charged spatial points measured in the track having charge density ρ(r′).

The better the elastic template ˇts points, the lower the energy of their interaction. The energy
E of interaction between these two charges is

E = −
∫

dr′drρT (r)V (r − r′)ρ(r′) → min .
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Here V is the Lorentz potential V (x, t) =
w2(t)

x2 + w2(t)
with a temperature-dependent width

w(t) = b − (a − b)exp (−t/T ), where T is a constant, a is the maximal distance, at which
points are still accredited to this template, and b ∼ σres is spatial resolution of a detector,
b � a. Taking measurement discreteness into account, we obtain the track interaction energy
as the sum:

E(π, t) = − 1
N

N∑
i

w2(t)
ε2(π, xi) + w2(t)

.

Here, N is the number of points in the track, ε(π, xi) is the distance of the ith point measured
in the space from the template and π is the set of the track parameters. The functional
E(π, t) depends on the points of only one track (although simultaneous ˇtting of all tracks is
also possible, but not recommended). To avoid E(π, t) local spurious minima the simulated
annealing procedure is applied. On the ˇrst iteration w(t) is taken for the highest temperature,
when E(π, t) has the only one minimum. Then w(t) is narrowed gradually allowing more
and more accurate search of the global minimum.

As was shown in [2], the elastic tracking algorithm is a particular case of the general
robust approach: data contamination means the violation of the Least Squares (LS) crucial
assumption of residual normality and, therefore, one has to consider gross-error model of a
contaminated distribution of measurement errors as

f(ε) = (1 − c)φ(ε) + c h(ε), (1)

where c is a parameter of contamination, φ(ε) is the Gauss distribution N(0, σ) and h(ε)
is some long-tailed noise distribution density. Following P. Huber's M -estimate theory, we
replace the LS functional Σi ε2

i by a functional

L(p, σ) = Σiρ(εi), (2)

where εi are residuals and ρ(ε) is a contribution function of Lorentz or other similar type.
It's easy to show that for minimizing of the functional (2) by parameters, its derivative

∂L(p)
∂p

=
n∑

i=1

∂ρ(εi)
∂εi

∂εi

∂p
= 0

by denoting w(ε) =
1
ε

∂ρ(ε)
∂ε

can be modiˇed to the form

∂L(p)
∂p

=
n∑

i=1

w(εi)
∂εi

∂p
εi = 0,

which is similar to the normal LS equations, but with replacement of the numerical weight
coefˇcients to the weight function w(ε) to be recalculated on each step of an iterative
procedure.

There are at least two difˇculties in (2) minimizing and choosing the weight function w(ε):
(i) lack of theoretical foundation for the use of; (ii) computational problems due to unknown
initial values of parameters to start iterations and (iii) non-uniqueness of the solution.
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Our novel approach for the ˇrst problem was proposed for the particular, but often case
of the uniform contamination, when h(ε) = h0 = const. It gives the optimal weight function

wopt(ε) =
1 + copt

1 + copt exp (ε2/2)
.

The only parameter copt is determined by the contamination of data not in the whole range
of the sample but within its essential part where all useful observations are concentrated.

A polynomial expansion of wopt(ε) up to the fourth order leads to the approximation

wT (ε) =

{
(1 − ε/(cT σ)2)2, if |ε| < cT σ,

0, otherwise.

It is the famous Tukey's bi-weights, which are easier to calculate than optimal ones.

The second problem of obtaining parameter initial values to start iteration procedure is
usually solved by applying to measurements the Hough transform (HT) (see, for instance,
[8]). In case of circles the coordinates of the parameter space are the ring centers and their
radii. Through three arbitrary signal points a unique circle can be drawn. Histogramming
of all obtained ring centers gives peaks for each circle, but due to high combinatorics direct
applying of HT procedure is very time consuming. A quite fast improvement of HT was
proposed [6] for circle recognizing. It is based on preliminary coarse histogramming of center
data and then clustering non-zero bins to obtain areas of interest where more detailed HT

Fig. 1. Example of the surface z = L(p, σ)

for the sample containing 20 points grouped

into three clusters. On these surfaces one can

see ®ravines¯, the number of which increases
as σ → 0

search is fulˇlled. The next 1D HT radius search
is easy to realize.

Computational problems arise because the
function L(p, σ) with bounded ρ(ε) often has sev-
eral minima. Such a nonuniqueness of L(p, σ) →
min can be overcome by the joint estimate of lo-
cation and scale parameters [2]. To clarify that let
us consider L(p, σ) as the function of two parame-
ters. On the corresponding surface in Fig. 1 one
can see ®ravines¯, whose bottoms are formed by
curved lines. Let us denote by N1 the line going
along the deepest ravine.

An obvious and easy computational algorithm
can be proposed from this consideration: since σ
is much less than the range of the sample, move gradually along N1 until reach a small
threshold σ = σmin. One can take σ0 equal to the range of the sample, σmin = 0.001,
σ(k+1) = 0.95 σ(k).

Does anyone see the full similarity with the simulated annealing procedure?

Numerous revealing examples of the robust approach applications are given in [1, 2],
including solution of left-right ambiguity problems for drift chamber tracking, Cherenkov ring
recognition on the quite noisy background, solution of calibration and alignment problems for
various detectors and some others.
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2. ARTIFICIAL NEURAL NETWORKS (ANN)

Let us remind brie
y the basic concepts of the ANNs. Artiˇcial neurons are simple
logical devices speciˇed by (i) activation level; (ii) topology of connections between neurons;
(iii) the measure of interaction with other neurons, which is referred to as synaptic coupling
power or weight; (iv) output level, which is related to the activation level by a certain, usually
sigmoid, function. The weights of these connections are different and can be deˇned in
dependence on the problem under consideration. The entire system consists of a vast number
of identical neurons and the result of the operation of an ANN is almost not sensitive to
the characteristics of a speciˇc neuron. The system provides the possibility of the parallel
processing of information.

The general input signal arriving at the jth neuron is

hj = �kwjkxk, (3)

where xk is the signal from the kth neuron of the network and wjk is the synaptic-connection
weight. The output signal of the jth neuron is the result of applying the activation function
to this total signal, i.e., yj = g(hj), where g(u) is either a threshold function or a contraction
sigmoid function like g(u) = 1/(1 + exp (−λu)).

The key characteristics of a network are the type of connections between neurons and
network evolution dynamics determined by the activation function for neurons and the rule
of varying weights upon this evolution.

ANNs that are extensively used in physics are determined by connections of two types:
feed-forward networks without feedback, e.g., multilayer perceptrons (MLPs) or recurrent
networks, where neurons are all connected with each other as in the Hopˇeld neural network.
One can also consider cellular automata [1] as a special type of ANN with local connections.

Neural networks are successfully applied to the problems of classiˇcation, forecasting, and
recognition. The simplicity of MLP structure stimulates many researchers to develop universal
software packages that generate MLP on the basis of a speciˇed number of layers and neurons
in them and realize one of the network training methods. It is remarkable that one of the
ˇrst such neural packages, JETNET, was developed by physicists at Lund University. For
the same reasons, already in the early 1990s, several ˇrms developing electronics succeeded
in the hardware realization of wide-applicable ANNs in the form of integrated chips, which
operate in parallel and allow the training of a network to an a priori simulated conˇguration
(see references in [1]). Numerous papers on the application of various neural chips can be
found in the special NIM issue A 389, 1997.

Concluding this section, we point out that MLP applications, most numerous in HEP, are,
as a rule, based on a traditional scheme: ˇrst, ANN training by the backpropagation algorithm
on a great training sample of simulated events, then embodying of the obtained ANN structure
and weights in software or, more often, hardware implementation.

A substantial example of joint applications of robust methods, cellular automata and neural
networks for data analysis in the OPERA experiment is given in [7].

2.1. Applications of Recurrent ANNs. As mentioned above, the general scheme of ANNs
is valid also for the Hopˇeld neural network, which is a fully interconnected network reducing
to the system of simple binary neurons. The evolution of the Hopˇeld neural network leads
to a certain stable equilibrium state. Treating an ANN as a dynamical system, Hopˇeld used
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the bilinear Lyapunov function as the network energy functional

E(s) = −1/2 Σijsiwijsj (4)

and demonstrated that, for the symmetric weight matrix wij = wji with zero diagonal wii = 0
and asynchronous network dynamics, evolution leads to a decrease in the network energy to
local minima corresponding to the points of network stability. Therefore, to ˇnd the stationary
state of a network, it is necessary to ˇnd a minimum of the energy functional on the basis of
the values of neuron states. For this aim, one applies the gradient descent method to energy
functional (4) and arrives at the following set of equations controlling network dynamics:

si =
1
2

(
1 + sign

(
−∂E

∂si

))
. (5)

However, the procedure of the iterative solution of set (5) for binary neurons often leads to a
certain local minimum of the energy functional. Moreover, binary neurons are unreal ideal-
ization in many practical applications. For this reason, Hopˇeld proposed the generalization
of his ANN model to the case of neurons with a continuous set of states. The standard way of
going over to neurons with continuous states is the introduction of statistical noise to a system
with further application of the mean-ˇeld theory (see, e.g., [9]), which leads to averaging the
values of the neuron states and to the replacement of step activation function to the following
sigmoidal function:

vi =
1
2

(
1 + tanh

(
−∂E

∂vi

)
1
T

)
=

1
2

(
1 + tanh

(
−Hi

T

))
, (6)

where the temperature T corresponds to the statistical noise level; Hi = 〈Σjwijsj〉T is the
local mean ˇeld of the neuron states. Values of neurons vi are no more integers; i.e., a
neuron is considered as active, if vi > vmin. The temperature T is decreasing according
to the simulated annealing scheme. The values of ANN neurons are iteratively updated
by equation (6) until reaching a stable point. Since vi are no longer binary, it is possible
to monitor neurons that join the points of tracks and, stimulated by the weights, increase
continuously their activity as the network evolves. The level vmin = 0.5 is usually taken as a
threshold activity level.

Hopˇeld's studies stimulated great attention to these networks, in particular, because their
evolution processes turned out to be connected with numerous optimization problems, which
are usually formalized as the problems of seeking a functional extremum under constraints
on the parameters of the functional. Among these problems, there is a problem of identifying
tracks on the basis of data obtained in coordinate measurements by current electronic detec-
tors such as proportional and drift chambers, or microstrip detectors. The determination of
connections between network neurons from measured coordinate values leads to a very large
number of neurons and even larger number of interneuron connections, the majority of which
are not associated with tracks. To overcome this ®size curse¯, the weight functions were
introduced in such a way as to stimulate connections between neurons belonging to the same
track and the energy functional was supplemented by restricting terms forbidding intertrack
connections and an excessive increase in the number of tracks.

The well-known method of segments [9] introduces neurons sij at the experimental point
set on the plane to determine whether the points i and j are connected or not; i.e., whether
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the given directed segment sij belongs to the track or not. In further calculations according
to scheme (4), the states of neurons cease to be integer-valued. Their values vij = 〈sij〉T
determine the activity level of neurons. The energy functional was deˇned as two-term
expression: E = Ecost + Econstraint. For recognition of smooth straight-line tracks, the ˇrst,
cost, term was taken so that it favors the short adjacent segments with a small angle between
them and the second, constraint, term was taken either to forbid bifurcation (i.e., the cases
where more than one neural segment connect to one point) or to permit them (in cases of
particle decays) and to balance between the number of active neurons and the number of
experimental points. An example of successful applications of this method can be found
in [11].

The idea of rotor ANNs (see refs. in [10]) determines a neuron as a unit vector ema-
nating from the ith point measured on the track. The energy function of the rotor network
is deˇned as

E = −1
2

∑
ij

1
|rij |m

vivj −
1
2
α

∑
ij

1
|rij |m

(virij)2.

Here, the ˇrst term forces neighbouring rotors to be close to each other. The second term
is in charge of the same between rotors and track-segments. In their initial state rotor's
directions were taken randomly, but after several tens of iterations of the ANN evolution
they usually aligned along the track. However, in its original view this idea did not ˇnd
many applications because of too high number of iterations and also because of its tendency
to straight tracks. However, after signiˇcant modiˇcations this approach was successfully
applied for the track recognition by data obtained on the magnetic spectrometer ARES [10],
as well as for processing data of the vertical sounding of the ionosphere [12]. We used such
a remarkable feature of any circle as the parallelism of its two tangents in points i and j
connected by a chord Rij after re
ecting one of these tangents respectively to this chord.
That gives the very simple view of the energy function without any constraints:

E = −1
2

∑
ij

vi · v′j ,

even if they have large curvatures [3, 10].
In the radius-based function (RBF) neural networks the basic equation (3) for the neuron

response, which is scalar product of the input vector X and the weight-coefˇcient vector
Wj , is replaced by the distance between them. A geometrical interpretation of these two
approaches is shown in Fig. 2.

Fig. 2. The discrimination of three strongly overlapping classes by a multilayer perceptron (a) and a

RBF network (b)
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The metric L2 = Σj(xj − wij)2 is often used as a metric, although other metrics such as
Σj |xj−wij |, maxi |xj−wij | or the so-called Makhalanobis distance are also in use depending
on the problem to be solved. The activation of the RBF-neuron is then determined by its
basis function, typically a Gaussian or sometime step function. Thus an RBF network has a
hidden layer of radial elements, each reproducing the Gaussian response surface. The network
output consists of their linear combination which can approximate an arbitrary function. For
this reason, the training of RBF networks is very fast, though their applications are seriously
complicated due to necessity to use a trial-and-error approach to determine Gaussian centers
and widths.

Therefore, self-conˇguring radial basis (SCRB) neural networks were proposed in [4] to
increase the speed of their functioning and to reduce essentially the number of neurons in the
hidden layer. The SCRB network is constructing itself in the process of training, because in
this process not only values of synaptic weights are calculated, but also the number of the
neurons in hidden layers and even the number of layers are also determined. Details of the
SCRB-network training procedure and examples of their applications to image recognition are
given in [1, 3, 4]

3. WAVELET ANALYSIS AND ITS APPLICATIONS IN HEP

One-dimensional wavelet transform (WT) of the signal f(x) has 2D form

WΨ(a, b)f =
1√
CΨ

∫
1√
|a|

Ψ
(

x − b

a

)
f(x)dx,

where Ψ is called a wavelet; b is a translation parameter; a is a dilation parameter or a scale,
and CΨ < ∞ is a normalizing constant. As an example of a continuous wavelet transform,
one can take the derivatives of the Gaussian function

Ψ(x) ≡ gn(x) = (−1)n+1 dn

dxn
e−x2/2, n > 0,

with Cgn = 2π(n − 1)!. Known as vanishing momentum (or Gaussian) wavelets, gn(x) are
especially suitable for handling bell-shaped signals, which can be well approximated by a
Gaussian.

Such a remarkable fact that the wavelet transformation of a Gaussian g(x; A, x0) =
A exp (−(x − x0)2/2σ2) looks as the corresponding wavelet was used in [13] for estimating
the Gaussian parameters and for the very high resolution of bell-shaped overlapping signals.

Gaussian wavelets g2 and g4 were successfully used in [5] for analyzing angular distri-
butions of secondary particles in high-energy nucleusÄnucleus interactions. Presenting the
distribution of the secondary particles on the pseudorapidity η = − ln (tan (θ/2)) in an
event as

f(η) =
dn

dη
=

1
N

N∑
i=1

∂(η − ηi),
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where N is multiplicity of single charged particles in the event, θ is polar angle and ηi is
pseudorapidity of ith particle, one obtains wavelet transform of f(η) as

WΨ(a, b) =
1
N

N∑
i=1

a−1/2Ψ
(

x − b

a

)
.

Figure 3 shows the g2 spectrum of an event involving six particles with the different pseudo-
rapidities. The values of the wavelet coefˇcients are presented by different grey levels. The
whiter levels correspond to larger coefˇcient values. Thus, it demonstrates that the wavelet
transform g2 enables us to classify particles for scales less than 0.3. In [5], this approach
was applied to analyze 884 and 504 events where sulfur and oxygen nuclei with momenta of
200 GeV/c per nucleon from the SPS accelerator (CERN) interacted with the NIKFI BR-2
nuclear photoemulsion piles. It was observed that the distributions of the groups on pseudo-
rapidities have irregularities showing preferences of emission angles of the groups. The pairs
of particles with close pseudorapidities, Δ < 10−5, are found for the ˇrst time. Gaussian
wavelets were also applied in small-angle neutron scattering experiment for spectrum smooth-
ing [14].

Fig. 3. The g2 spectrum of an event involving six particles

The discrete character of experimental data measured by various counters and electronic
detectors made more applicable the use of discrete wavelet family. It is especially advanta-
geous for quite urgent problems of peak detection on experimental spectra. Special program
packages were elaborated at the JINR Laboratory of Information Technologies, implementing
fast algorithms for both discrete and continuous wavelets. It is intensively used for data
smoothing and ˇltering.

There are a wide group of important problems of processing such 2D objects as images
and, in particular, a new phenomenon observed in high-energy hadron collisions as jets, which
are groups of particles strongly correlated in the space and time.

One step of a wavelet transform of a 2D signal is performed by transforming each
dimension of the signal independently. Then two-dimensional sub-band s1 that contains the
low pass part in both dimensions is transformed further, as shown in Fig. 4, where dk is high
pass of the kth step of this decomposition, hk and vk are 1D wavelet transforms for horizontal
and vertical image scans, correspondingly.

2D histogram of pseudorapidity versus ϕ using as weights transverse momenta with two
jets of different width contaminated by 800 tracks uniformly distributed in space and then
ˇltered is depicted in Fig. 5.

This algorithm is more effective than standard procedure LUCELL and is quite resistant
to background noise.
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Fig. 4. Scheme of 2D wavelet transform

Fig. 5. a) Two simulated jets before adding background; b) uniform noise added; c) two peaks with

different width after ˇltering by 2D wavelets

CONCLUSION

Three basic methods Å robust methods of mathematical statistics, artiˇcial neural net-
works and wavelet analysis Å extensively applied at JINR to process recent experimental
data have been expounded. This paper primarily covers studies in which scientists of the
Laboratory of Information Technologies participated, in particular, in the collaborations with
the leading physical centers such as CERN, DESY, BNL, GSI, etc. The basic principles of the
reviewed methods and the most useful and promising examples of their applications have been
discussed. In particular, examples of the successful applications of robust approaches under
very different experimental conditions as well as the remarkable coincidence (see Sec. 1) of
the robust approach with powerful elastic-tracking methods indicate that the robust approach
is very promising. In the next section we paid more attention to the fully interconnected
and radial basis neural networks than to multilayer feed-forward ones more popular in HEP
because we wanted to stress the great potential of the ˇrst two types of ANN.
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The wavelet analysis can provide large capabilities. Qualitatively new possibilities for
analyzing complex implicit dependences can be provided by two-dimensional wavelets, which
are little used yet.
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