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An approach based on a paradigm of self-organized criticality is proposed for experimental inves-
tigation and theoretical modelling of software evolution. The dynamics of modiˇcations is studied for
three free open source programs Mozilla, Free-BSD and Emacs using the data from version control
systems. Scaling laws typical of self-organization criticality are found. The model of software evolution
presenting the natural selection principle is proposed. The results of numerical and analytical investiga-
tion of the model are presented. They are in good agreement with the data collected for the real-world
software.
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INTRODUCTION

In recent time there have been a lot of attempts to reveal basic evolutionary mechanisms
and universal laws of elementary interaction forming dynamics in real complex systems. The
construction of theory of self-organized criticality (SOC) is the essential achievement of these
investigations [1]. It was shown that the behaviour of many ®in a natural way¯ arisen systems
can be qualitatively described in the framework of simple mathematical models [2, 3, 5]. It
makes it possible to understand inherent dynamical features of the complex system being
important both for theoretical considerations and for practical applications [4Ä7].

In this paper we present based on the SOC-paradigm approach of investigation of evolution
of large computer program [8]. This process is a good example of dynamics formed by natural
selection in complex system, and the study of it is a vital topic nowadays [10].

Large software systems must evolve constantly or they risk losing the market share. How-
ever, maintaining of such a system is extraordinary difˇcult, complicated and time consuming.
The task of adding new features, adding support for new hardware devices and platforms,
system tuning, and defect ˇxing becomes more difˇcult as a system ages and grows [10,12].
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Despite of the fact that the ˇrst papers of software evolution study are now decades old,
the basic mechanisms of evolution of computer programs are unclear. Most of the existing
research is directed on quantitative description of changes in a system, and the question about
underlying mechanism is left aside [12, 13]. In this paper we propose a formal model of
software evolution that would simulate at least qualitatively the most essential features of
processes in the real-world software systems.

The structure of the paper is as follows. Section 1 is a short review of the state of the
ˇeld. In Sec. 2 we describe the experimental techniques and the results of its application to
three real-world systems. In Sec. 3 we propose the model of software evolution and give the
results of computer simulation. In Sec. 4 we present analytical results obtained for the model
with random neighbor interactions.

1. GENERAL PROPERTIES OF SOFTWARE CHANGES

The source code of the majority of existing computer programs changes. There are a lot
of reasons to change a program. The basic motives are as follows [9,14]: defect correction,
adding a new feature or possibility, adding new platform or device support, system tuning
cosmetic changes.

The ˇrst item in this list had a lot of attention attracted. There is a bunch of research
and papers dedicated to ˇxing of the bug area. However (and the situation has not changed
essentially for the last thirty years), the search and correction of defects is still an actual
problem [9,10].

A multitude of research papers propose some kinds of statistical methods and metrics to
ease the task of search and correction of defects and to answer the question about quality of
computer software [16, 17]. The term ®defect¯ can be deˇned in different ways. The usual
deˇnition is a deviation from speciˇcations or expectations [9].

Generally, efforts have tended to concentrate on the following three problem perspectives:
predicting the number of defects in the system; estimating the reliability of the system in
terms of time to failure; understanding the impact of design and testing processes on defect
counts and failure densities [9].

The majority of work on predicting the number of defects are based on some kind of
metrics describing complexity, size, volume, etc., of a system. First research in this area
began in early seventies. Halstead [17] proposed a number of complexity metrics. From our
point of view, the main disadvantage of such an approach is that taking into account changes
going on due to defect correction one loses changes occurred because of other reasons. Even
the best in the world static metrics that predicts a number of improvements for a program to
correspond a speciˇcation becomes useless if the speciˇcation changes in time essentially.

Lehman et al. have built the largest and best known body of research on software evolution
of large, long-lived software systems [10, 11]. Lehman's laws of software evolution suggest
that as system grows in size, it becomes increasingly difˇcult to add new code unless explicit
steps are taken to reorganize the overall design. There were some systems examined both at
system level and within the top-level subsystems [12,13]. It has been noted that subsystems
can behave quite differently from the system as a whole. In [14, 15] the ®code decay¯
metaphor has been proposed to describe the continuous process that makes the software more
brittle over time.
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To study software evolution processes it is necessary to have an information about the
state of the system in different moments of time. The usual source of this knowledge is
different versions or releases of a product [10,12,13]. Unfortunately, the number of releases
seldom exceeds a couple of tens. It is signiˇcantly decreases our possibility to study the
dynamics of software evolution. The better sources of information about changes in computer
programs are version control systems such as CVS, Teamware/SCCS, etc. These systems
keep information about changes that happened in much frequent moments of time.

Following [12] we should note that the majority of research in the software evolution
area done with closed systems, developed using traditional process and management. So the
results of such a research cannot be reproduced or denied by independent research (which is
one of the basic principles of scientiˇc work). And even more: sometimes the published data
contain intentional distortions to keep commercial secrets.

In the last couple of decades, due to Free Software movement success we have perfect
possibility to experimentally study software evolution. There are a lot of open source projects
that are successfully developing through years. Some of these projects we used in our present
work as experimental material [18Ä20].

One of the unclear topics in software engineering is an existence of ®abnormally¯ large

uctuations during the development of software. In spite of using a variety of software
development technologies and development process improvements, large projects encounter
the necessity to rewrite large pieces of code, comparable with the size of the system as a
whole.

In physical systems large 
uctuations are distinctive feature of the so-called critical be-
haviour. Critical phenomena arouse in the point of second order phase transitions. Developed
turbulence is an example of critical dynamics. SOC is called the critical regime of dynamics
arising without ˇne tuning of system parameters. The SOC dynamics is peculiar to many
complex systems in the Nature [1], therefore we started our investigations with checking of
hypothesis that evolution or real-world software should be a SOC process.

2. EXPERIMENTAL STUDY OF SOFTWARE CHANGES

Since most important features of critical behaviour are scale invariance and universality,
the aim of our experimental investigation was to reveal them in evolution of computer
programs. In our work we studied the histories of such software projects as Mozilla web
browser, Free-BSD Operating System and Gnu Emacs text editor [18Ä20]. For each of these
projects we studied only ˇles written in basic for the project language. For Mozilla it is C++,
for Free-BSD it is C and for Emacs it is Lisp. Header ˇles for C/C++ were not studied. Total
amount of ˇles processed is 9000, 11000, 900 approximately for Mozilla, Free-BSD, Emacs
in order. Total length of RCS-ˇles constitutes 1 · 107, 1 · 107 and 2 · 106 lines. Total amount
of data processed exceeds 2 GB. Due to some resource limitations only part of Free-BSD
CVS storage is processed.

Histories of all three projects are stored under control of Concurrent Versioning System
(CVS) and were publicly available during our research period from the corresponding Internet
servers [18Ä20]. CVS allows one to store old versions of ˇles and information about who,
when and why made some changes to data. The second useful feature of CVS is allowing
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multiple people to work with one ˇle simultaneously. At any given moment of time the
system keeps current state of all the data space and contains enough information to restore
any past state. Each data ˇle is kept in the following way: a text of the last (current) version;
changes form the previous state (delta); previous delta; etc. The deltas carry information
about which lines one must delete and which lines must be added to a version of ˇle to get
the previous version. For each delta of each ˇle an amount D of deleted lines and an amount
A of lines added were collected. Empty lines and comments were collected together with the
rest of the data. A number of lines in the very ˇrst version of each ˇle was not counted.

Distributions P (A) and P (D) were evaluated for these two arrays Ai and Di. As an
example the data for the Free-BSD are shown in Figs. 1 and 2, for Emacs in Figs. 3 and
4 in logÄlog scale. One can see that these graphs can be perfectly approximated by linear
function. It means that P (A) and P (D) can be well approximated by power function
P (A) ∼ Aμa , P (D) ∼ Dμd . The values of exponents are the following:

Free-BSD: μa = −1.44 ± 0.02, μd = −1.48± 0.02;
Mozilla: μa = −1.43 ± 0.02, μd = −1.47± 0.02;
Emacs: μa = −1.39 ± 0.03, μd = −1.49 ± 0.04.

Fig. 1. Distribution P (A) for Free-BSD Fig. 2. Distribution P (D) for Free-BSD

Fig. 3. Distribution P (A) for Emacs Fig. 4. Distribution P (D) for Emacs

Thus, the amounts of changes in the system between two metastable states can be described
by power functions with nontrivial exponents. It is interesting to note that the value of μa
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for Emacs somewhat differs from the similar values for the other two systems. One can
speculate that this is because of different topological structures of the language or because
of differences in development process. Of course this question needs the further study. The
obtained scaling laws can be considered as a conˇrmation of hypothesis that evolution of
large computer program is a scale invariant universal SOC dynamics.

There is widely used term ®avalanche¯ in the theory of critical processes. It denotes bursts
of activity during which long range correlations are built in a system. The SOC systems (i.e.,
systems coming to the critical state not because of parameter tuning, but because of dynamics
of the system itself) change their metastable states via avalanches.

For the software evolution process the close analog of the avalanche is a set of changes
going on from version to version. An important feature of software changes is that one
programmer can modify a program at only one point at a time (at least using a traditional
development tools). In a given time a programmer can make a lot of changes in a lot of
places. The question is: what determines the order in which the changes are made? A
possible answer can be given by consideration of the extremal dynamics systems. This is
the class of the systems in which the changes are going on only in places characterized by
an extremal value of some variable. In analogy with the above-said a programmer has some
subjective estimation of parts of a program and makes changes not in any place, but in place
where this estimation reaches extremely nonsatisfactory values.

These analogies between SOC systems, extremal dynamics and software development
process gave us the idea that it is possible to apply methods used to study SOC systems for
the analysis and study of evolution processes in large real-world software projects.

3. MODEL OF SOFTWARE EVOLUTION

In our model we represent computer program as a sequence of similar elements Å lines
of code. There is a number corresponding to each line Å a barrier. The state of the system
of N elements is fully given by bi(t), i = 1, 2, . . . , N . The ith barrier bi(t) as a function of
discrete time t takes its value from interval [0, 1]: 0 � bi(t) � 1.

The dynamics of the model is as follows: in the beginning the value of every barrier is a
random number. On every step of discrete time the node with minimal barrier is found. After
that there are two possibilities. It can be deleted from the system with probability α, and the
barriers of the nodes it has been connected with (its neighbors) are set random. Or, some new
node connected with the minimal one is inserted into system with probability 1−α; after that
barriers of minimal one, its neighbors and the new node are set into random values. So the
size of the system decreases or increases by one during each step. It is supposed that there is
minimal number K of nodes in the system. By deˇnition, if the current number of nodes is
equal K , deleting of ones is impossible.

It is easy to see that our model is a modiˇcation of well-known Simple Model of Biological
Evolution introduced by Bak and Sneppen [3]. The signiˇcant difference of our model is a
variable number of elements in the system. In our study we have chosen two modiˇcations
of the model: the two-nearest-neighbors system and random-neighbor system. For the two-
nearest-neighbors system the nodes are organized into one-dimensional lattice. So if the
minimal barrier is found at the nth node its nearest neighbors are n + 1th and n − 1th.
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There is a periodic boundary condition in the model, so the ˇrst and the N th nodes are the
neighbors. For the random-neighbors system there is no order of nodes. At every step of
time any k random nodes are chosen as neighbors. This system can be seen as a mean ˇeld
approximation for a lattice model [4].

Dynamics in this kind of systems is usually described as the so-called avalanche process.
In extremal dynamic systems there are two kinds of avalanches: λ-avalanches and transient
avalanches [3, 5, 6]. In our model we are interested mostly in transient avalanches. They can
be deˇned as follows: let at the moment t0 of discrete time the minimal barrier have the value
f0. The sequence of S time steps, during which the minimal barrier bmin(t), t0 < t < t0 + S
does not exceed f0 ˇnished at the t0 + S step, at which the value of minimal becomes larger
than f0, is called transient avalanche or just avalanche.

Usually one is interested in distributions P (S) of avalanche temporal durations and P (R)
of avalanche spatial volume. But in our model the size of the system changes during the
avalanche. So P (R) has no meaning for our model. There is a pair of variables distributions
which correspond to P (R) in our case. A is a number of new elements appeared in the
system at the end of avalanche. Note that this is not the total number of elements appeared in
the system during the avalanche with probability 1−α. Because some of the newly appeared
elements can be killed by the subsequent deletions during the very same avalanche. D is a
number of elements disappeared from the system at the end of the avalanche. Note again
that this is not the total amount of deleted during avalanche elements. As we could delete
elements created during the same avalanche, so they do not appear neither in initial state nor
in the ˇnal state. There is an equal description in terms of A + D and A − D. But we think
that our choice of variables A and D somewhat a little bit more natural.

In our work we studied mostly the distributions P (S), P (A), P (D) of temporal and spatial
characteristics of avalanches. Moreover, there are some characteristics of the model that can
be interesting to study from the SOC point of view, such as distribution of barriers in critical
state, distribution of minimal barrier.

We made numerical experiments for two modiˇcations of the model: one-dimensional
lattice model (1DM) with periodic boundary conditions and model with one random neighbor
(RNM). The α coefˇcient always was taken as 1/2.

The initial size of the system was 8000 elements. The experiment went on until one
million of avalanches registered. We got the following results: P (S) ∼ S−τ , P (A) ∼ A−μa ,
P (D) ∼ D−μd with exponents τ = −1.358± 0.005, μa = −1.45± 0.01, μd = −1.47± 0.02
for 1DM and τ = −1.901± 0.008, μa − 1.98 ± 0.01, μd = −2.10 ± 0.02 for RNM.

The proposed model reproduces basic mechanisms of software evolution. Changes are
made by programmer locally in the place where these changes most of all needed. But if a
programmer changes a program in one place, he often has to change it in other points in some
way connected to the ˇrst one. For example, in order to change the number of arguments
of subroutine call, we need to change not only the line containing the call operator but the
deˇnition of the subroutine either. This would lead to some subsequent changes of all the
calls to the subroutine in all the program. Another example: if we add the line in which we
read some data from disk, we should add some lines to check if the data read successfully,
which, in turn, can require some change in the list of the modules included, which, in turn,
can cause a name con
ict, which, in turn, can . . . , etc. Such an avalanche process ends up
when all the parts of the program code are more or less satisfy some subjective and implicit
criteria of our programmer. This is why we study transient avalanches of self-organization



Scaling Laws in Evolution of Large Computer Programs 359

period and not the λ avalanches of the stationary mode. After the avalanche the value of
minimal barrier becomes greater than it was before the avalanche. Naively speaking, the
program as a whole becomes ®a little bit better¯ after the avalanche.

As we can see, important dynamic characteristics of the model are described by the
power function distributions which allows one to make a conclusion about the observation of
self-organized criticality.

4. ANALYTICAL RESULTS FOR RNM

For the random-neighbor version of our model one can write exact master equations. Let
us chose a parameter 0 < λ < 1 and deˇne the probability PkN (t) that at the time point t the
system has N nodes and k barriers of them are less than λ. It follows from the dynamical
rules that PkN (t) fulˇls the equation: we shall use the following notations: we denote the
probability Pn,N (t) that at the time point t there are N elements in the system and n barriers
are less than λ. Master equation is of the form

Pn,N (t + 1) = (α + βδN,K+1)P a
n,N (t) + βP d

n,N (t),

where β = 1− α and in terms of μ = 1− λ, ρn,N = (n− 1)/(N − 1) the quantities P d
n,N (t)

and P a
n,N (t) can be presented by the following relations:

P a
n,N (t) = Aa

n+2N−1Pn+2,N−1(t) + Ba
n+1N−1Pn+1,N−1(t)+

+ Ca
nN−1Pn,N−1(t) + Da

n−1N−1Pn−1,N−1(t) + Ea
n−2N−1Pn−2,N−1(t)+

+ (μ3δn,0 + 3λιμ2δn,1 + 3λ2μδn,2 + λ3δn,3)P0,N−1(t),

P d
n,N (t) = Ad

n+2N+1Pn+2,N+1(t) + Bd
n+1N+1Pn+1,N+1(t)+

+ Cd
nN+1Pn,N+1(t) + (μδn,0 + λδn,1)P0,N+1(t).

Here,
Aa

n,N = μ3ρn,N ,

Ba
n,N = 3λμ2ρn,N + μ3(1 − ρn,N ),

Ca
n,N = 3λμ2(1 − ρn,N ) + 3λ2μρn,N ,

Da
n,N = 3λ2μ(1 − ρn,N) + λ3ρn,N ,

Ea
n,N = λ3(1 − ρn,N), Ad

n,N = μρn,N ,

Bd
n,N = μ(1 − ρn,N) + λρn,N ,

Cd
n,N = λ(1 − ρn,N)

and all these coefˇcients are zero when n � 0, or n > N .
Mean value of the system element number n(t) at time point t can be calculated exactly

and has the following asymptotic for large t:
for α > 1/2,

n(t) = (2α − 1)t + n(0) − 2αβ

(α2 − β2)
+

(4αβ)t/2g1(t)
t3/2

,
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for α = 1/2,

n(t) =

√
2t

π
+

g2(t)
t1/2

and for α < 1/2,

n(t) = K +
[1 + (−1)t+K(1 − 2α)2(pev − pod)]

2(1 − 2α)
+

(4αβ)t/2g3(t)
t3/2

.

Here we denoted the probability pev (pod) that the initial number N(0) of nodes is even
(odd). The function gi(t), i = 1, 2, 3 is bounded for large t, i.e., there are constants T ,
M that |gi(t)| < M , if t > T . Since 4αβ < 1 for α �= 1/2, the function f(t) decreases
exponentially fast for large t.

The asymptotic behaviour of n(t) demonstrates the dynamical phase transition at the point
α = 1/2. For α < 1/2, the volume of system remains ˇnite, but for α � 1/2, it can became
as large as one likes. At the point α = 1/2, the dynamics of the system is a critical one.

CONCLUSION

The avalanche-like processes seem to be natural for modiˇcations of programs. The ob-
tained statistical characteristics of avalanches make it possible to conclude that self-organized
criricality (SOC) is the dominating dynamical regime in evolution of free software. We
demonstrated that the natural selection can create this type of ®punctuated equilibrium¯ for
such complex ®virtual beings¯ in info-sphere.

We believe that in the framework of the proposed approach the methods of investigation of
the SOC dynamics can be very effective for studies of universal aspects of software evolution.
Our results could be seen also as a theoretical prerequisite for the development of new tools
and methods for advanced measures of software engineering quality.

The work of Yu.M. P. is partially supported by grants RSS-5538.2006.2 and RNP.2.1.1.112.
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