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In�uence of strong uniaxial small-scale anisotropy on the stability of inertial-range scaling regimes in
a model of a passive transverse vector ˇeld advected by an incompressible turbulent �ow is investigated
by means of the ˇeld theoretic renormalization group. Turbulent �uctuations of the velocity ˇeld are
taken to have the Gaussian statistics with zero mean and deˇned noise with ˇnite correlations in time. It
is shown that stability of the inertial-range scaling regimes in the three-dimensional case is not destroyed
by anisotropy, but the corresponding stability of the two-dimensional system can be corrupted by the
presence of anisotropy. A borderline dimension dc, below which the stability of the scaling regime is
not present, is calculated as a function of anisotropy parameters.
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INTRODUCTION

It is well known that the breakdown of the classical KolmogorovÄObuchov phenomeno-
logical theory of fully developed turbulence [1] is more noticeable for simpler models of
passively advected scalar or vector quantity (scalar or vector ˇeld) than for the velocity ˇeld
itself. This phenomenon is encoded in the terms intermittency and anomalous scaling [1, 2].
At the same time, the problem of passive advection is easier from theoretical point of view
(see, e.g., [3] and references therein). Therefore, it leads to the fact that the problem of
anomalous scaling can be understood here in a few ways, what is not possible for the present
in the problem of genuine turbulence.
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One of the most effective approaches for studying self-similar scaling behaviour is the
method of the ˇeld theoretic renormalization group (RG) [4, 5]. It can be also used in the
theory of fully developed turbulence and related problems [5Ä7], e.g., in the problem of a
passive scalar (or vector) ˇeld advected by a given stochastic environment.

In [8] the ˇeld theoretic RG was applied to the so-called rapid-change model of a passive
scalar advected by a self-similar white-in-time velocity ˇeld, which is also known as Kraichnan
model. It was shown that within the ˇeld theoretic RG approach the anomalous scaling is
related to the existence of ®dangerous¯ composite operators with negative critical dimensions
in the framework of the operator product expansion (OPE) [5Ä7].

Afterwards, various generalized descendants of the Kraichnan model, namely, models with
inclusion of large- and small-scale anisotropy, compressibility, and ˇnite correlation time of
the velocity ˇeld were studied by the ˇeld theoretic approach (see [9] and references therein).
Moreover, advection of a passive vector ˇeld by the Gaussian self-similar velocity ˇeld (with
and without large- and small-scale anisotropy, pressure, compressibility, and ˇnite correlation
time) has been also investigated and all possible asymptotic scaling regimes and cross-over
among them have been classiˇed [10Ä13]. General conclusion is: the anomalous scaling,
which is the most important feature of the Kraichnan rapid change model, remains valid for
all generalized models.

In what follows we shall begin with investigation of one particular model of a passive
vector advected by a Gaussian velocity ˇeld with ˇnite correlation time in the presence of the
small-scale anisotropy, namely, the model where the stretching term is absent (the so-called
A = 0 model, see, e.g, [11,13]). This model is speciˇc from several points of view, but maybe
the most important fact is that in contrast to the other models of passive vector admixture,
where the anomalous scaling is related to the composite operators built of the vector ˇeld
without derivatives [12, 13] in the case under consideration, it is related to the composite
operators built solely of the gradients of the ˇeld. This fact radically changes the complexity
of the problem, especially in the anisotropic case (see, e.g., [11, 14] and references therein).
Thus, in some sense, it can be considered as a further step to the nonlinear NavierÄStokes
equation. In what follows, we shall present only the ˇrst part of the RG analysis, namely,
we shall analyze the in�uence of the small-scale anisotropy on the infrared (IR) stability of
the possible scaling regimes of the model. It will be seen that complexity of this task is also
very close to the corresponding problem in the stochastic NavierÄStokes equation [15].

1. FIELD THEORETIC FORMULATION OF THE MODEL

We shall consider the model of the advection of transverse (solenoidal) passive vector
ˇeld b ≡ b(x, t), which is described by the following stochastic equation:

∂tb = ν0Δb− (v · ∇)b + f , (1)

where ∂t ≡ ∂/∂t, Δ ≡ ∇2 is the Laplace operator; ν0 is the diffusivity (a subscript 0 denotes
bare parameters of unrenormalized theory), and v ≡ v(x, t) is incompressible advecting
velocity ˇeld. The vector ˇeld f ≡ f(x, t) is a transverse Gaussian random (stirring) force
with zero mean and covariance

Df
ij ≡ 〈fi(x, t)fj(x′, t′)〉 = δ(t − t′)Cij(r/L), r = x − x′, (2)
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where parentheses 〈. . .〉 hereafter denote average over corresponding statistical ensemble. The
noise deˇned in Eq. (2) maintains the steady-state of the system, but the concrete form of the
correlator will not be essential in what follows. The only condition which must be fulˇlled
by the function Cij(r/L) is that it must decrease rapidly for r ≡ |r| � L, where L denotes
an integral scale related to the stirring.

In real problems the velocity ˇeld v(x) satisˇes NavierÄStokes equation but, in what
follows, we shall work with a simpliˇed model where we suppose that statistics of the velocity
ˇeld is given in the form of Gaussian distribution with zero mean and pair correlation function

〈vi(x)vj(x′)〉 ≡ Dv
ij(x; x′) =

∫
ddkdω

(2π)d+1
Rij(k)Dv(ω,k) e−iω(t−t′)+ik(x−x′), (3)

where d is the dimension of the space; k is the wave vector, and Rij(k) is a transverse
projector. In our uniaxial anisotropic case it is taken as (see, e.g., [12] and references therein)

Rij(k) =
(
1 + α1(n · k)2/k2

)
Pij(k) + α2nsnlPis(k)Pjl(k), (4)

where Pij(k) ≡ δij − kikj/k2 is common isotropic transverse projector, the unit vector n de-
termines the distinguished direction, and α1, α2 are parameters characterizing the anisotropy.
From the positiveness of the correlation tensor Dv

ij one immediately ˇnds restrictions on the
values of the above parameters, namely, α1,2 > −1. The function Dv(ω,k) in (3) is taken in
the following form [13]:

Dv(ω, k) =
g0u0ν

3
0k4−d−2ε−η

(iω + u0ν0k2−η)(−iω + u0ν0k2−η)
, (5)

where g0 plays the role of the coupling constant of the model (a formal small parameter
of the ordinary perturbation theory), the parameter u0 gives the ratio of turnover time of
scalar ˇeld and velocity correlation time, and the positive exponents ε and η are small RG
expansion parameters. The coupling constant g0 and the exponent ε control the behaviour of
the equal-time pair correlation function of velocity ˇeld and the parameter u0 together with
the second exponent η are related to the frequency ω � u0ν0k

2−η which characterizes the
mode k. The value ε = 4/3 corresponds to the celebrated Kolmogorov ®two-thirds law¯ for
the spatial statistics of velocity ˇeld, and η = 4/3 corresponds to the Kolmogorov frequency.
Simple dimensional analysis shows that g0 and u0, which we commonly term as charges, are
related to the characteristic ultraviolet (UV) momentum scale Λ (or inner legth l ∼ Λ−1) by

g0 � Λ2ε, u0 � Λη. (6)

The stochastic problem (1)Ä(3) can be treated as a ˇeld theory with action functional [4,5]

S(Φ) = b′j

[ (
−∂t − vi∂i + ν0Δ + ν0χ10(n · ∂)2

)
δjk+

+ nj ν0

(
χ20Δ + χ30(n · ∂)2

)
nk

]
bk − 1

2

(
vi[Dv

ij ]
−1vj − b′iD

f
ijb

′
j

)
, (7)

where Dv
ij and Df

ij are given in (3) and (2), respectively; b′ is an auxiliary vector ˇeld (see,
e.g., [5]), and the required integrations over x = (x, t) and summations over the vector indices
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are implied. In action (7) the terms with new parameters χ10, χ20, and χ30 are related to the
presence of small-scale anisotropy and they are necessary to make the model multiplicatively
renormalizable. Model (7) corresponds to a standard Feynman diagrammatic technique (see,
e.g., [12,15] for details) and the standard analysis of canonical dimensions then shows which
one-irreducible Green functions can possess UV superˇcial divergences.

The functional formulation (7) gives possibility to use the ˇeld-theoretic methods, includ-
ing the RG technique to solve the problem. By means of the RG approach it is possible
to extract large-scale asymptotic behaviour of the correlation functions after an appropriate
renormalization procedure which is needed to remove UV-divergences.

2. SCALING REGIMES OF THE MODEL

Details of the one-loop ˇeld-theoretic RG analysis of the model will be done elsewhere.
Here we only conclude that using the RG analysis leads to the following result: possible
scaling regimes are given by the IR stable ˇxed points of the system of ˇve nonlinear RG
differential equations (�ow equations or also known as Gell-MannÄLow equations) for ˇve
scale-dependent effective variables (charges) C̄ = {ḡ, ū, χ̄1, χ̄2, χ̄3} of the model, which
are functions of the dimensionless scale parameter t = k/Λ [5, 15]. The system of the
�ow equations is deˇned by the so-called β functions of the model (they are functions of the
charges, anisotropy parameters, space dimension, and parameters ε, η) and it has the following
form:

t
dḡ

dt
= βg = ḡ(−2ε + 2γ1) , t

dū

dt
= βu = ū(−η + γ1) , (8)

t
dχ̄i

dt
= βχi = χ̄i(γ1 − γi+1) , i = 1, 2, 3, (9)

where functions γi, i = 1, 2, 3, 4 are given by the following expressions (one-loop approxi-
mation):

γ1 = −g
Sd−1

(2π)d

1
2(d − 1)(d + 1)

1∫

−1

dx
(1 − x2)(d−3)/2

w1w2
K1, (10)

γi+1 = − g

χi

Sd−1

(2π)d

1
2(d − 1)(d + 1)

1∫

−1

dx
(1 − x2)(d−3)/2

w1w2
Ki+1, i = 1, 2, 3, (11)

where Sd = 2πd/2/Γ(d/2) is the surface of the d-dimensional sphere; w1 = (1 + u +
χ1x

2), w2 = (1+u+χ1x
2+(χ2+χ3x

2)(1−x2)), and the coefˇcients Ki(x2, g, u, χ1, χ2, χ3,
α1, α2, d), i = 1, 2, 3, 4 are some huge polynomials in respect to all variables and their explicit
form will be given elsewhere. The scale parameter t belongs to the interval 0 � t � 1 with
the initial conditions given at t = 1 and the IR stable ˇxed point corresponds to the limit
t → 0, i.e., C̄|t=0 = C∗.

We have performed a numerical analysis of this system of differential equations and our
aim was twofold. First of all, we have found all possible scaling regimes and we have analyzed
the regions of their IR stability in the ε−η plane. The results of this analysis are shown in
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Fig. 1. The scaling regimes of the model in the ε−η plane. The region FPI corresponds to the
trivial rapid-change limit: g∗/u∗ = 0, 1/u∗ = 0. The region FPII corresponds to the the nontrivial

rapid change limit: g∗/u∗ > 0, 1/u∗ = 0. The region FPIII corresponds the trivial ®frozen¯ limit:

g∗ = 0, u∗ = 0. The region FPIV is related to the nontrivial ®frozen¯ limit: g∗ > 0, u∗ = 0. In the
end, the line ε = η (FPV) corresponds to the more interesting scaling regime with g∗ > 0, 0 < u∗ < ∞

Fig. 2. Dependence of the borderline dimension dc on the parameters α1 (a) and α2 (b) for different
values of u = u∗. The corresponding scaling regime is stable above the given curve

Fig. 1, where it is shown that the model exhibits ˇve different scaling regimes (two for rapid-
change limit, two for the so-called ®frozen¯ limit, and one general with nonzero u∗) (see,
e.g., [13] and references therein). The second question which was investigated is related to the
dependence of stability of the above-mentioned scaling regimes on the anisotropy parameters
α1, α2 and on the dimension of the space d. We have found the so-called borderline dimension



Numerical Investigation of Scaling Regimes in a Model of Anisotropically Advected Vector Field 385

dc between stable and unstable regimes as a function of anisotropy parameters α1, α2 and
parameter u∗. The results are shown in Fig. 2 for some special situations. One can see that the
presence of small-scale anisotropy leads to the violation of the stability of the corresponding
scaling regimes below dc ∈ [2, 3] for appropriate values of anisotropy parameters. But from
the point of view of further investigation of anomalous scaling the most important conclusion
is that all the three-dimensional scaling regimes remain stable under in�uence of small-scale
uniaxial anisotropy.

CONCLUSIONS

Using the ˇeld theoretic RG we have studied the in�uence of small-scale uniaxial anisotropy
on the stability of the scaling regimes in the model of a passive vector advected by given
stochastic environment with ˇnite time correlations. It is shown that the system exhibits ˇve
different scaling regimes. They are related to the values of the parameters ε and η. On the
other hand, the stability of all these scaling regimes are in�uenced by presence of small-scale
anisotropy, which is demonstrated in the existence of the so-called borderline dimension dc,
which is a function of the anisotropy parameters. The dc is deˇned as dimension above which
the corresponding scaling regime is stable and below which the stability of the regime is
destroyed. All calculations have been done at the one-loop level. The results will be used in
the further investigations of the anomalous scaling of the model.
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