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Two original approaches for solution of elastic boundary value problems with domain decomposition
(DDBVP) using the symmetric Galerkin boundary element method (SGBEM) are presented. Each
approach is based on a variational principle, a difference between them consists in the treatment of the
coupling conditions which connect the solutions through an interface. The developed computer codes
are able to deal with curved interfaces in a domain decomposition problem discretized by non-matching
meshes of linear elements along the interfaces. The effectiveness of the methods is documented by a
numerically solved example.
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1. DOMAIN DECOMPOSITION

Let us consider an elastic body deˇned by a domain Ω with a bounded Lipschitz boundary
∂Ω = Γ. Let n denote the outward unit normal vector deˇned almost everywhere on the
boundary Γ. We conˇne ourselves only to an analysis in 2D continuum (plain strain).

In the domain decomposition methods [2], we start with a split of the domain Ω. For the
sake of simplicity, let us consider a split into two non-overlapping parts ΩA and ΩB , whose
respective boundaries are denoted as ΓA and ΓB , see Fig. 1. There also exists a common
part of both boundaries, let us denote it by Γc. Considering the boundary conditions for
displacements uη and tractions tη , η = A, B and the split of the boundary Γη due to them,
we can write the DDBVP for the Navier equation in the form

cη
ijklu

η
k,lj(x) = cη

ijklεkl,j(uη(x)) = 0, x ∈ Ωη, (1a)

uη
i (x) = gη

i (x), x ∈ Γη
u, (1b)

tηi (x) = (Tnη(x))i(uη(x)) = hη
i (x), x ∈ Γη

t , (1c)

tAi (x) = −tBi (x), uA
i (x) = uB

i (x), x ∈ Γc, (1d)
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Fig. 1. A domain decomposition problem

with the elastic stiffness tensor cijkl , i, j, k, l = 1, 2, strain tensor εij , traction operator T n

and further with the natural coupling conditions providing compatibility of displacements and
equilibrium of tractions (1d).

2. VARIATIONAL FORMULATION

The solution of (1) is constructed on a variational principle, based on the results of
the one-domain SGBEM variational formulation introduced by Bonnet [1] and adapted for
DDBVP by Vodicka et al. [4]. Let us introduce a functional of energy with Lagrange
multipliers Eλ(uA,uB, λu, λt), which is a function of displacements uA, uB and of the
Lagrange multipliers λu, λt. Physically, they correspond to some displacements and tractions
at the interface. The functional Eλ can be expressed in the following form:

Eλ(uA,uB, λu, λt) = EA
t (uA) + EB

t (uB) + Eλ
c (uA,uB, λu, λt), (2a)

where the functionals EA
t (uA) and EB

t (uB) introduce the total energy associated to the
subdomains ΩA and ΩB , respectively, with the exclusion of their interface boundary parts.
Namely, taking η = A, B,

Eη
t (uη) =

1
2

∫

Ωη

εij(uη)cη
ijklεkl(uη)dV −

∫

Γη
t

hη
i uη

i dS −
∫

Γη
u

tηi (uη
i − gη

i ) dS. (2b)

The last term in Eq. (2a) introduces a form of interface energy, modiˇed by Lagrange-
multipliers terms. It can be introduced by the relation

Eλ
c (uA,uB, tA

c ,uB
c , λu, λt) = −

∫

Γc

uB
i

(
tAi + tBi

)
dS+

+
∫

Γc

(λt)i

(
uB

i − uA
i

)
dS +

∫

Γc

(λu)i

(
tAi + tBi

)
dS. (2c)
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The functions tA and tB represent the tractions of the displacement solutions uA and uB ,
respectively, calculated via the traction operator T n.

The interface energy introduces additional unknowns Å Lagrange multipliers to explicitly
set the interface conditions (1d). As will be shown in what follows, these unknowns can be
eliminated. Namely, if we put λu equal to uB and λt to tA, we obtain the following interface
energy:

ER
c (uA,uB) = −

∫

Γc

tAi
(
uA

i − uB
i

)
dS, (2d)

which also reduces Eλ in (2a) to a new energy functional ER(uA,uB).
Both introduced energy functionals can be used to solve the DDBVP (1), as their stationary

point provides the problem solution. This fact can easily be observed considering vanishing
variations of both functionals

δEλ(uA,uB, λu, λt; δuA, δuB, δλu, δλt) = 0, (3a)

δER(uA,uB; δuA, δuB) = 0, (3b)

with virtual functions δuA, δuB , δλu, δλt.
We can eliminate the volume integrals and restrict the virtual displacements to those

which satisfy the Navier equation (1a) applying an integral representation provided by the
Somigliana displacement identity [3]:

δuη
i (x) =

∫

Γη

Uη
ij(x, y)ϕη

j (y)dyS −
∫

Γη

T η
ij(x, y)ψη

j (y)dyS, x ∈ Ωη, (4)

where Uη
kl is the fundamental solution of the Navier equation associated to the elastic material

of Ωη and T η
kl represents the fundamental tractions, obtained from the fundamental solution

via the traction operator: Tη(x, y) =
(
T nη(y)Uη(x, y)

)T
, T denoting the transpose matrix.

A similar representation can be introduced for the tractions pertinent to the virtual dis-
placements, namely

δtηi (x) =
∫

Γη

T η∗
ij (x, y)ϕη

j (y)dyS −
∫

Γη

Dη
ij(x, y)ψη

j (y)dyS, x ∈ Ωη, (5)

with Tη∗(x, y) = T nη(x)Uη(x, y), Dη(x, y) = T nη(x)Tη(x, y) and nη(x) being a normal to
an auxiliary curve passing through the point x at which the traction is evaluated.

The integral representations (4) and (5) can be, after a standard limit-to-the-boundary
process (which originates jumps in some integrals), substituted into variations (3) and (after
reordering the terms, change of the integration order, and introducing an operator notation
for simplicity) a matrix form of the resulting boundary integral equation systems can be
derived [4].

The boundary integral equation systems for searching the stationary point of the functionals
Eλ and ER, can be written in a matrix-operator form

ΦT AX = ΦTB, (6)
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which should be valid for any virtual vector function Φ. The shapes of the matrix operators
depend on the chosen energy functional. The difference between the application of Eλ and
ER includes additional equations and additional unknowns for the formulation with Lagrange
multipliers.

For the use with SGBEM, it is convenient to leave the system in the weak form as it is
natural for Galerkin methods. Moreover, in the described form the property of the symmetry,
which have both integral operators is clearly visible. This property will also be proper to the
matrix obtained after discretization.

3. AN EXAMPLE

Let us consider a ring body (elastic constants: G = 104 MPa, ν = 0.25) loaded by
four point tensile forces F . Due to the symmetry, only a quarter of the whole ring will
be considered for the numerical solution, see Fig. 2, a. For the numerical solution, both
variational approaches, based on Eλ and ER, have been used, let us distinguish them
by λ and R, respectively. The results contain data of three different boundary element
meshes along the interface: as the role of the subdomains ΩA and ΩB in the used varia-
tional formulation is different, the ˇrst mesh contains NA = 48 elements along Γc on the
ΩA-side and NB = 112 elements on the ΩB-side, the second mesh has the numbers of
elements interchanged, i.e., NA = 112, NB = 48, and the third mesh has the same number
of elements on both sides of the interface Γc, NA = NB = 48. For the R formulation
only the ˇrst and the third meshes are considered, as the other case, when NA > NB leads
to numerically unstable results, see [4]. It should be noted that the non-conforming meshes
along a curved Γc leads to interpenetrations and gaps between the approximated subdomains,
see Fig. 2, b. Nevertheless, even in such a situation the above numerical procedures are able
to provide excellent approximations of the solution of the original problem.

Fig. 2. The example: a) geometry description; b) a non-conforming mesh on the curved interface

The graphs contain the data obtained along the interface curve AB. Both displacements
and tractions nicely ˇt the known analytical solution, nevertheless differences in the dis-
tribution of the errors appear, see Figs. 3, 4. While at the coarse meshes the distributions
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Fig. 3. Displacements and their errors: a) the ˇne mesh; b) the coarse mesh

Fig. 4. Tractions and their errors: a) the ˇne mesh; b) the coarse mesh

Fig. 5. Lagrange multipliers errors: a) λu; b) λt
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are relatively smooth, the ˇne meshes show a zigzag character in the interior of the inter-
face. The more apparent oscillations appear in the tractions close to the end points of the
interface zone both for the coarse and ˇne meshes. The error distribution of the Lagrange
multipliers of the λ formulation in Fig. 5 even stresses the overall oscillatory behavior, espe-
cially λt conˇrms this known property from some ˇnite element formulations with Lagrange
multipliers.

CONCLUSIONS

Two variational SGBEM approaches have been presented and their behaviours have been
compared in an example. The ˇrst observation leads to a statement that both of them can
be used with satisfactory results. Differences between them appear when we focus on the
evaluation of the errors in the interface. Due to the character of the interface conditions
and the type of their prescription, the numerical data at ˇne meshes always present some
oscillations. The magnitude of the oscillation peaks depends on the type of the used mesh
and on the form of the approach used.

The work is partially supported by VEGA, No. 1/1006/04 and by Spanish Ministry of
Science and Technology, No.MAT2003-03315.
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