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ASYMPTOTIC HAMILTONIAN REDUCTION FOR THE
DYNAMICS OF A PARTICLE ON A SURFACE

V. L. Golo, D. O. Sinitsyn
Moscow State University, Moscow

We consider the motion of a particle on the surface generated by a small perturbation of the
standard sphere. The key observation is that a trajectory of the particle has the shape of a coil, and one
may qualitatively describe the turns of the latter as a precessing great circle of the sphere. Thus, we
change the conˇguration space of the initial problem for the space of great circles on the sphere. The
construction enables us to derive a subsidiary Hamiltonian system having the shape of equations for the
top with a fourth-order Hamiltonian. The subsidiary system provides the detailed asymptotic description
of the particle's motion in terms of graphs on the standard sphere.
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INTRODUCTION

The dynamics of a particle which is allowed to move on a smooth surface and not acted
upon by any forces, is the classical problem in analytical dynamics [1]. The orbits of the
particle (or geodesics on the surface) are generally hard to ˇnd. Even in the speciˇc case
of ellipsoid there is a need for the use of the analytical mechanics [2]. Nonetheless, the
latter runs across serious difˇculties in studying geodesics. The reason for this lies in that
there is generally only the energy conservation; all other integrals of motion, even the angular
momentum, being absent owing to an asymmetry of the problem.

To overcome these difˇculties we shall employ the construction of a subsidiary Hamil-
tonian problem that is easy to solve and provides a qualitative description for the ensemble
of orbits. We shall restrict our problem and suppose the surface to be a perturbed standard
sphere. Thus, we may use the perturbation theory for studying the orbits, and construct a
subsidiary Hamiltonian system which acts in a phase space different from the initial one, its
points being great circles of the standard sphere. This approach enables us to give a fairly
detailed picture of the ensemble of orbits by means of graphs on the standard sphere; the
vertices of the graphs corresponding to orbits which are asymptotically closed and the edges
of the graphs to orbits joining the almost closed ones.
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To be speciˇc, the central idea relies on the circumstance that if the surface does not differ
substantially from a sphere, the great circles of the latter may serve a good approximation to
the surface's geodesics, if they are short enough, and one can visualize them as winding up

Fig. 1. Two coils I, II of an orbit on the
surface ϕ(x) = 0; vectors NI and NII

are the normals to the planes of great

circles approximating the coils

in coils; loops or rings of the coil corresponding to
great circles of the sphere (see Fig. 1). Hence approx-
imating the successive rings by great circles, we may
describe the change in the position of the rings by the
motion of a great circle, which in its turn is determined
by the normal vector L of the plane cutting the sphere
along the great circle. To cast this picture in a more
quantitative form, we may use the fact that the nor-
mal vector L is the angular momentum of the particle
moving along the great circle.

Averaged Equations of Geodesics. The equa-
tions determining geodesics on a surface given by the
equation ϕ(x) = 0 can be cast in the form of the
equation [1]

ẍ = λ
∂ϕ

∂x
. (1)

The Lagrangian multiplier can be found explicitly, so
that the equation of motion, in the form that does not
involve λ, reads

ẍ = −
ẋ

∂2ϕ

∂x2
ẋ(

∂ϕ

∂x

)2

∂ϕ

∂x
. (2)

In this paper we consider surfaces that do not differ substantially from sphere, and assume
that their equations be of the form

ϕ(x) =
3∑

i=1

(x2
i + εix

4
i ) − 1 = 0, (3)

where εi are small.
Consider the angular momentum L = x × ẋ. The equations for its components can be

derived from (2) and (3). Then we use the method of averaging. Generally, the approach
relies on studying the evolution equations for integrals of motion of the unperturbed system,
i.e., in our case the normals to the planes of the great circles, with respect to the basic periodic
solution of the latter. The averaging serves as a ˇlter separating the main regular part of the
solution from the oscillating one caused by small terms considered as perturbation, see [3].

We may write the basic equation for the particle's motion on the sphere of unit radius in
the form

x = cos (ωt + θ)e1 + cos (ωt + θ)e2,

vector e3 of the orthonormal basis e1, e2, e3 being parallel to L. The angular velocity ω is
given by the equation ω2 = ẋ2 = L2, valid to within the ˇrst order of perturbation. With the
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help of the equations given above and neglecting terms of the second, and higher, order in
the εi, we can derive equations for L that do not involve x. After averaging these equations
read

L̇1 =
3
4

L2L3

L2

[
(ε3 − ε2)L2

1 + ε3L
2
2 − ε2L

2
3

]
,

L̇2 =
3
4

L3L1

L2

[
−ε3L

2
1 + (ε1 − ε3)L2

2 + ε1L
2
3

]
,

L̇3 =
3
4

L1L2

L2

[
ε2L

2
1 − ε1L

2
2 + (ε2 − ε1)L2

3

]
.

(4)

It is worth noting that equations (4) have the Hamiltonian form determined by the usual
Poisson brackets for the angular momentum [4,5]

{Li, Lj} =
∑

k

εijkLk,

and the Hamiltonian

H =
3
16

L2
∑

i

εi

[(
Li

L

)2

− 1

]2

. (5)

This circumstance is particularly interesting because, usually, the averaging procedure is
not compatible with Hamiltonian structure. The system we have obtained is the integrable
Hamiltonian one, but its exact solution is cumbersome. Therefore, we shall ˇnd a qualitative
description of the system's motion and extensively use numerical simulation.

Fig. 2. Separatrix net corresponding to the graph of Type I on the sphere; the twin points correspond to

the symmetry given by Eq. (6)

The important point is considering the stationary solutions to Eqs. (4) for which the right-
hand sides turn out to be zero. They split into three parts S1, S2 and S3, determined by
conditions on εi, as follows.
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S1. No algebraic constraints imposed on εi:

a. L10 = 0, L20 = 0, L30 �= 0;

b. L10 = 0, L20 �= 0, L30 = 0;

c. L10 �= 0, L20 = 0, L30 = 0.

S2. The constraints on L relaxed and linear constraints imposed on εi:

a. L10 = 0, L20 �= 0, L30 �= 0, ε3L
2
20 − ε2L

2
30 = 0;

b. L20 = 0, L30 �= 0, L10 �= 0, ε1L
2
30 − ε3L

2
10 = 0;

c. L30 = 0, L10 �= 0, L20 �= 0, ε2L
2
10 − ε1L

2
20 = 0.

S3. Vector L subject to L10 �= 0, L20 �= 0, L30 �= 0 and the quadratic constraints imposed
on εi:

L2
10

ε1 ε2 − ε2 ε3 + ε3 ε1
=

L2
20

ε1 ε2 + ε2 ε3 − ε3 ε1
=

L2
30

−ε1 ε2 + ε2 ε3 + ε3 ε1
.

It is worth noting that equations S2 involve the fulˇlment of the inequalities ε2ε3 > 0,
ε3ε1 > 0, and ε1ε2 > 0 for cases S2.a, S2.b, S2.c, respectively, whereas equations S3
involve

ε1 ε2 − ε2 ε3 + ε3 ε1 > 0,

ε1 ε2 + ε2 ε3 − ε3 ε1 > 0,

−ε1 ε2 + ε2 ε3 + ε3 ε1 > 0.

Linearizing Eqs. (4) at the stationary solutions and considering small 
uctuations of L
round them, we may study their stability. Some of them turn out to be centers and the others
saddle points.

We may put this information in a graphic form by using the integral L2 = const, and
consider the motion of L on a sphere of ˇxed radius, the integral of energy H taking
appropriate values. Then the stationary solutions are ˇxed points as regards Eqs. (4), the
stable and the unstable points are centers and saddle points, respectively, the separatrices
being lines joining the ˇxed points. Together, they generate a graph on the sphere, having the
ˇxed points as vertices and the separatrices as edges. It is important that the separatrices, i.e.,
the edges of the graph, are oriented according to the time t, so that the graph is the oriented
one, and invariant with respect to the symmetry

R → −R, t → −t. (6)

Considering different values of εi, we obtain the following topological types of the graphs:

Type I. 7 centers and 6 saddles, εi being subject to the constraints:

ε1ε2 − ε2ε3 + ε3ε1 > 0,
ε1ε2 + ε2ε3 − ε3ε1 > 0,

−ε1ε2 + ε2ε3 + ε3ε1 > 0.
(7)
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Type II. 5 centers and 4 saddle points; εi are not equal to zero, have the same sign, and at
least one of Eqs. (7) is not true.

Type III. 3 centers and 2 saddle points, εi being subject to one of the following constraints:
ε2ε3 > 0 and ε1ε2 � 0; ε3ε1 > 0 and ε2ε3 � 0; ε1ε2 > 0 and ε3ε1 � 0.

Type IV. 2 centers and 1 saddle point, εi being subject to one of the following constraints:
ε1 = 0 and ε2ε3 � 0; ε2 = 0 and ε3ε1 � 0; ε3 = 0 and ε1ε2 � 0.

Taking into account the homogeneous form of the constraints imposed on εi, we may visualize
them on the projective plane corresponding to εi (see Fig. 3).

Fig. 3. Regions of εi corresponding to Types IÄIV of the phase diagrams of the auxiliary system

It should be noted that we must check as to whether the solutions provided by Eqs. (4)
agree with those given by original Eqs. (1) (see Fig. 4).

Fig. 4. Comparison of the solution to the initial equations for geodesics and the averaged equation given

by the auxiliary system
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CONCLUSION

The key point of the present investigation is the auxiliary Hamiltonian system, which
can be considered as a reduction of the initial problem to a dynamical problem on speciˇc
conˇguration and phase spaces. Points of the new conˇguration space are geometrical objects,
i.e., great circles, of the conˇguration space of the base, i.e., the standard sphere, so that we
obtain a Hamiltonian system that describes the transformation of these objects. In analytical
terms, one may consider it as an asymptotic reduction of the system of equations for orbits
on a deformed sphere to that of the top, but with the Hamiltonian of the fourth order. The
simpliˇcation we get in this way is substantial. Indeed, the Hamiltonian system for geodesics
could be non-integrable, whereas the auxiliary system is totally integrable and described by
a graph that comprises vertices, which correspond to stationary solutions, or almost closed
orbits, and edges, which can be visualized as orbits joining them.

REFERENCES

1. Whittaker E. T. A Treatise on the Analytical Dynamics. Cambridge 1927. Chs. III, IV, XIII.

2. Jacobi C.G. Vorlesungen éuber Dynamik. M., 2004. Ch. 28.

3. Hamming R.W. Numerical Methods for Scientists and Engineers. N. Y., 1962. Ch. 24.

4. Routh E. J. Dynamics of a System of Rigid Bodies. London; N. Y., 1891Ä1892. Ch. 10.

5. Arnold V. I. Mathematical Methods in Classical Mechanics. N.Y., 1992. Ch. 9.


