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ANALYSIS OF EXPERIMENTAL DATA
ON RELATIVISTIC NUCLEAR COLLISIONS

IN THE LOBACHEVSKY SPACE
A. A. Baldin, E. G. Baldina, E. N. Kladnitskaya, O. V. Rogachevsky

Joint Institute for Nuclear Research, Dubna

Relativistic nuclear collisions are considered in terms of relative 4-velocity and rapidity space
(the Lobachevsky space). The connection between geometric relations in the Lobachevsky space and
measurable (experimentally determined) kinematic characteristics (transverse momentum, longitudinal
rapidity, square relative 4-velocity bik, etc.) is discussed. The experimental data obtained using the
propane bubble chamber are analyzed on the basis of triangulation in the Lobachevsky space. General
properties of relativistic invariants distributions characterizing the geometric position of particles in the
Lobachevsky space are discussed. The transition energy region is considered on the basis of relativistic
approach to experimental data on multiparticle processes. Possible applications of the obtained results
for planning of experimental research and analysis of data on multiple particle production are discussed.

�·µ¢µ¤¨É¸Ö · ¸¸³µÉ·¥´¨¥ ·¥²ÖÉ¨¢¨¸É¸±¨Ì Ö¤¥·´ÒÌ ¸Éµ²±´µ¢¥´¨° ¸ ¨¸¶µ²Ó§µ¢ ´¨¥³ ¸¢µ°¸É¢
¶·µ¸É· ´¸É¢  µÉ´µ¸¨É¥²Ó´ÒÌ 4-¸±µ·µ¸É¥° ¨ ¶·µ¸É· ´¸É¢  ¡Ò¸É·µÉ (¶·µ¸É· ´¸É¢  ‹µ¡ Î¥¢¸±µ£µ).
� ¸¸³ É·¨¢ ¥É¸Ö ¸¢Ö§Ó ³¥¦¤Ê £¥µ³¥É·¨Î¥¸±¨³¨ ¸µµÉ´µÏ¥´¨Ö³¨ ¢ ¶·µ¸É· ´¸É¢¥ ‹µ¡ Î¥¢¸±µ£µ ¨ ¨§-
³¥·Ö¥³Ò³¨ (µ¶·¥¤¥²Ö¥³Ò³¨ ¨§ Ô±¸¶¥·¨³¥´É ) ±¨´¥³ É¨Î¥¸±¨³¨ Ì · ±É¥·¨¸É¨± ³¨ (¶µ¶¥·¥Î´Ò°
¨³¶Ê²Ó¸, ¶·µ¤µ²Ó´ Ö ¡Ò¸É·µÉ , ±¢ ¤· É µÉ´µ¸¨É¥²Ó´µ° 4-¸±µ·µ¸É¨ bik ¨ ¤·.). �±¸¶¥·¨³¥´É ²Ó-
´Ò¥ ¤ ´´Ò¥, ¶µ²ÊÎ¥´´Ò¥ ¶·¨ ¶µ³µÐ¨ ¶·µ¶ ´µ¢µ° ¶Ê§Ò·Ó±µ¢µ° ± ³¥·Ò,  ´ ²¨§¨·ÊÕÉ¸Ö ´  µ¸´µ¢¥
É·¨ ´£Ê²ÖÍ¨¨ ¢ ¶·µ¸É· ´¸É¢¥ ‹µ¡ Î¥¢¸±µ£µ. �¡¸Ê¦¤ ÕÉ¸Ö µ¡Ð¨¥ ¸¢µ°¸É¢  · ¸¶·¥¤¥²¥´¨° Î ¸É¨Í ¢
·¥²ÖÉ¨¢¨¸É¸±¨-¨´¢ ·¨ ´É´ÒÌ ¶¥·¥³¥´´ÒÌ, Ì · ±É¥·¨§ÊÕÐ¨Ì £¥µ³¥É·¨Î¥¸±µ¥ · ¸¶µ²µ¦¥´¨¥ Î ¸É¨Í
¢ ¶·µ¸É· ´¸É¢¥ ‹µ¡ Î¥¢¸±µ£µ. �  µ¸´µ¢¥ ·¥²ÖÉ¨¢¨¸É¸±µ£µ · ¸¸³µÉ·¥´¨Ö Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ
¶µ ³´µ¦¥¸É¢¥´´Ò³ ¶·µÍ¥¸¸ ³ µ¡¸Ê¦¤ ¥É¸Ö ¶¥·¥Ìµ¤´ Ö µ¡² ¸ÉÓ Ô´¥·£¨°. �¡¸Ê¦¤ ÕÉ¸Ö ¢µ§³µ¦´µ-
¸É¨ ¶·¨³¥´¥´¨Ö ¶µ²ÊÎ¥´´ÒÌ ·¥§Ê²ÓÉ Éµ¢ ¤²Ö ¶² ´¨·µ¢ ´¨Ö Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¨¸¸²¥¤µ¢ ´¨° ¨
 ´ ²¨§  ¤ ´´ÒÌ ¶µ ³´µ¦¥¸É¢¥´´µ³Ê ·µ¦¤¥´¨Õ Î ¸É¨Í.

INTRODUCTION

A desire to discover simple laws of nature describing a wide range of phenomena plays
a progressive role of one of the basic principles of fundamental science. An important step
in constructing theories is the selection of a set of variables for description of observed
phenomena. That is why special attention is paid in this paper to the discussion of the
variables used in analysis of relativistic particle collisions.

The theory of nuclear interactions is at present far from completeness. Essentially, it
represents a set of phenomenological models and approaches describing the available experi-
mental data. The most complicated from the point of view of theoretical description of nuclear
matter is, in our opinion, the transition region between the protonÄneutron model of a nucleus
and the region where excitation of internal quarkÄgluon degrees of freedom is essential.
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One of the most important problems nowadays, as it was formulated by a distinguished
scientist S. Nagamia in 1994, is the determination of the conditions in which hadrons lose their
identity, and subnucleonic degrees of freedom begin to play a dominant role. A. M. Baldin
proposed a classiˇcation of applicability of the notion ®elementary particle¯ on the basis of
a variable bik (square relative 4-velocity between the considered objects) [1] introduced by
him, in answer to the above problem.

The investigation of the properties of the 4-velocity space allows one to formulate general
rules of particle distributions, develop relativistically invariant methods of analysis of multi-
particle production, and imposes a number of intrinsic limitations on the relativistic collision
models. Long-term investigations (see, for example, [10Ä12]) are dedicated to the application
of the Lobachevsky geometry in physics.

1. THE RELATIVE 4-VELOCITY SPACE.
GENERAL CHARACTERISTICS OF PARTICLE DISTRIBUTIONS

When studying nuclear reactions the experimentally determined quantities are momentum,
angle, type of registered particle, collision energy, reaction cross section, and their derivatives.

The relativistically invariant measurable scalar quantity
PiPj

mimj
, where Pi, Pj are

4-momenta of particles i and j, and mi, mj are masses of these particles, underlies the
determination of invariant mass, rapidity ρ, square relative 4-velocity bik and invariant cross
section.

Rapidity ρ forms a metric space Å the Lobachevsky space. Investigation of the properties
of this space is necessary for understanding the relation between the 4-dimensional energy-
momentum space and the 3-dimensional Euclidean space of physical experiment.

The invariant variable described through measurable quantities is the particle 4-velocity:

U =
{
U0;U

}
, (1)

where U0 =
E

m
, U =

p
m

. Here E is the total energy, p is the 3-dimensional momentum,

and m is the mass of particle.
The 3-dimensional Lobachevsky space is connected with the 4-dimensional velocity space

by expressing the fourth component of the velocity through the ˇrst three:

U0 = ±
√

1 + U2
x + U2

y + U2
z . (2)

The Lobachevsky geometry of the 3-dimensional rapidity space is deˇned on the upper
sheet of the two-sheet hyperboloid (3). The relations between the components of the 4-velocity
and rapidity are the following:

U0 = ch ρ; |U| = sh ρ. (3)

So, the relation between the particle energy, momentum and mass E2 − p2 = m2 takes
the following form in the rapidity space: (ch ρ)2 − (sh ρ)2 = 1.
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The particle rapidity in the laboratory system can be expressed in terms of measurable
parameters as follows:

ρ =
1
2

ln
E + |p|
E − |p| . (4)

The invariant variable bik is deˇned as [1]

bik = − (Ui − Uk)2 = 2 [(UiUk) − 1] = 2
[
EiEk − pipk

mimk
− 1

]
. (5)

The relation between the variable bik and rapidity is evident:

bik = 2 [(UiUk) − 1] = 2 [chρik − 1] . (6)

Fig. 1. The normalized distributions of rela-

tive 4-velocities of the pairs of registered par-

ticles (p−p, p−π and π−π) in the reactions
C + Ta (�), He + Ta (�), d+ Ta (�), p+ Ta (�)

Consider typical particle distributions over
the variable bik for the data obtained using
the propane bubble chamber illuminated by 4.2-
GeV/c p, d, He, C beams at interaction of rela-
tivistic nuclei with matter [2]. The experimental
data used hereafter were obtained by the collab-
oration [3, 4] for investigations using the 2-m
propane chamber [5]. Figure 1 shows the nor-
malized distributions of relative 4-velocities of
pairs of particles (protons and π mesons) regis-
tered in the reactions C + Ta, He + Ta, d + Ta,
p + Ta. It is seen that the character of the dis-
tributions for all four reactions is similar. It is
also seen that the number of particles with rela-
tive 4-velocities close to zero grows steeper than
an exponent Å in a pole-like way. The pole
approximation in the form

dσ

dN
≈ C

(bik + α)2
, where α ≈ 0.002 (7)

was proposed for the ˇrst time for the cross sections of fragmentation processes in [1].
The experimentally observed change of the character of bik distributions from the pole-like

to the exponent and power-like illustrates the classiˇcation of elementary particle interactions
proposed by A. M. Baldin [6]:

• the region 0 � bik � 10−2 relates to nonrelativistic nuclear physics, where nucleons can
be considered as point objects;

• the region bik ∼ 1 relates to excitation of internal degrees of freedom of hadrons;
• the region bik � 1 should, in principle, be described by quantum chromodynamics.
A large number of publications (see, for example, [6, 7]) are dedicated to investigation

of particle distributions over bik and analysis of general properties of these distributions, in
particular, the correlation depletion principle.

The analysis of bik distributions carried out by the authors showed that the shape of
these distributions is independent of particle multiplicity in an event. Figure 2 shows the
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distributions of relative 4-velocities of all combinations of pairs of protons and π mesons in
the reaction C + Ta for the selected events arranged into ˇve groups: for multiplicity in the

Fig. 2. The normalized distributions of relative

4-velocities of the pairs of registered particles
(p−p, p−π and π−π) in the reaction C + Ta for

ˇve groups of the selected events: with multi-
plicity in the intervals 16Ä20 (�), 26Ä30 (�),

36Ä40 (�), 46Ä50 (�), and 56Ä60 (�) particles

intervals 16Ä20, 26Ä30, 36Ä40, 46Ä50, and
56Ä60 particles.

Independence of inclusive cross sections of
meson production of multiplicity was noted by
the authors in [8]. Independence of such dis-
tributions of experimentally observed particle
characteristics of multiplicity indicates that the
mechanism of independent nucleonÄnucleon col-
lisions prevails in multiple particle production.
This general property should be taken into ac-
count in theoretical and computer models of
nucleonÄnucleon collisions and in planning of
experiments aimed at investigation of exotic
states of nuclear matter (quarkÄgluon plasma
and other collective effects).

Consider particleÄtarget relative 4-velocity
distributions for protons, registered using the
propane bubble chamber in the reactions C + Ta,
p + C (Fig. 3). The plots demonstrate the exis-
tence of transition to internal degrees of freedom

of nucleons for bik close to unity. Note that this effect is the same for different interacting
nuclei and different collision energies.

Fig. 3. The particleÄtarget relative 4-velocity dis-

tributions for the registered protons in the reac-
tions C (4.2 GeV/c)+Ta → p (�), p (10 GeV/c)+

C → p (�)

Fig. 4. Total cross sections of hadron interactions

as functions of relative 4-velocity. The data are
taken from [9]: � Å pp; � Å π−p; � Å π+p

The transition to internal nucleon degrees of freedom can be demonstrated on the basis of
the available data on total cross sections of hadron interactions (Fig. 4) [9]. Thus, it is in the
region bik ∼ 1, both for a targetÄregistered proton pair (Fig. 3) and a targetÄprojectile pair
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(Fig. 4), that subnucleonic degrees of freedom of nuclear matter are signiˇcant, and nucleons
are no more point-like.

Fig. 5. The distribution of relative 4-velocities b13+

b23−b12, where 1 and 2 are the projectile and target,

respectively, and 3 is the registered proton, for the

reaction C +Ta → p

It should be noted that the variable bik

does not form a metric space; i.e., the rela-
tion b12 + b13 � b23 is, generally speaking,
wrong. This can be illustrated using the ex-
perimental data of the collaboration for in-
vestigations using the 2-m propane chamber.
Figure 5 shows the distribution of the value
b13 + b23 − b12, where 1 and 2 indicate the
projectile and target, respectively, and 3 the
registered proton, for the reaction C + Ta. It
is seen from Fig. 5 that a large part of protons
tends to be displaced ®close¯ to the projec-
tile and target simultaneously. Rapidity ρik

has an advantage that, being, along with bik,
the relativistic invariant, it forms, unlike bik,
a metric space Å the Lobachevsky space.

Total interaction cross sections of π
mesons, K mesons, protons as functions of
particleÄtarget relative rapidity are shown in Fig. 6. The rapidity range between 1 and 4,
corresponding to the projectile momentum between 1 and 25 A ·GeV/c, deˇnes the transition
energy region between classical nuclear physics and quantum chromodynamics.

Fig. 6. The total interaction cross sections of π mesons, K mesons, protons as functions of particleÄ

target relative rapidity. The data are taken from [9]: � Å pp; � Å π−p; � Å π+p; � Å K−p;
� Å K+p

Thus, taking into account non-Euclidean character of the 4-velocity space is important
already at relatively low hadron energies (starting from hundreds of MeV), and nonrelativistic
mechanistic images based on the notions of isotropy, thermalization, etc., have principle
limitations related with the selection of a reference system.



12 Baldin A. A. et al.

2. GEOMETRIC CHARACTERISTICS OF PARTICLE DISTRIBUTIONS
IN THE RAPIDITY SPACE

Analysis of particle properties in terms of rapidity is more complete than consideration of
its longitudinal and transverse components. In literature, however, experimental data are often
presented as functions of longitudinal rapidity (projection on the reaction axis) and transverse
momentum (or transverse mass). Longitudinal rapidity is deˇned as follows:

y =
1
2

ln
E + p||
E − p||

, (8)

and transverse mass as

mT =
√

m2 + p2
T , (9)

where pT is transverse momentum.
Deˇne transverse rapidity τ :

ch τ =
mT

m
. (10)

Total rapidity ρ is related with longitudinal and transverse rapidities by the Pythagorean
theorem in the Lobachevsky space:

ch ρ = ch y · ch τ. (11)

The properties of the space pose certain limitations on the rapidity range (the consequence
of metric characteristics of triangles with the sides Å relative rapidities):

(ρ23)
max
min = |ρ12 ± ρ13| , (ρ13)

max
min = |ρ12 ± ρ23| , (ρ12)

max
min = |ρ23 ± ρ13| . (12)

The simplest geometric element is a triangle. Basic relations for a triangle with the
vertices Å rapidities in the Lobachevsky space (see Fig. 7) are given below.

Fig. 7. A simplex in the Lobachevsky space. Particles with

rapidities ρ1, ρ2, ρ3 correspond to the vertices of the triangle

123. The triangle sides ρ12, ρ13, ρ23 are relative rapidities
of particles 1, 2, 3. If 2 is a target at rest in the laboratory

system, then the angle α2 is equal to the laboratory angle of

the registered particle

Two theorems can be used to deˇne the relations between the sides and angles of the
triangle: the law of cosines

ch (ρ12) = ch (ρ13) · ch (ρ23) − sh (ρ13) · sh (ρ23) · cos (α3), (13)

and the law of sines
sh (ρ12)
sin (α3)

=
sh (ρ13)
sin (α2)

=
sh (ρ23)
sin (α1)

. (14)

Note that the height of the triangle h (see Fig. 7) is deˇned as

sh (h) = sh (ρ23) sin(α2) = sh (ρ13) sin (α1).

Thus, h coincides with the transverse rapidity of particle 3, i.e., is a dimensionless
relativistically invariant characteristic of transverse motion.
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Fig. 8. The ρ23 distributions of protons for two se-

lected angle α3 intervals: α3 > 1.6 rad (�) and α3 <

1.3 rad (�) in the reaction p (10 GeV/c) +C → p

Usually, when analyzing experimental
data, the registered particles are classiˇed
on the basis of the criterion of interaction
®hardness¯. For example, the ®evaporating¯
protons with momenta less than 300 MeV
with respect to the target and ®stripping¯
protons with momenta close to the projectile
momentum and laboratory angles less than
4◦ are attributed to the results of ®soft¯ in-
teractions [2]. The analysis in the rapidity
space allows one to apply a uniˇed relativis-
tically invariant criterion for such a classi-
ˇcation using particleÄtarget and particleÄ
projectile relative rapidities. For ®soft¯ in-
teractions the upper limit of relative rapidity
is ∼ 0.3.

Note that such a relativistically invariant
analysis is valid for all and with respect to any registered particles, as well as, generally
speaking, to all points of the rapidity space, rather than only two points corresponding to
the colliding objects. Such an approach is especially helpful in analysis of multiple particle
production for their separation into groups (pair correlations, clusters, jets, etc.).

In any projecting geometry, including the Lobachevsky geometry, the principle of dual-
ity is valid, according to which statements formulated in terms of distances between points are

Fig. 9. The normalized distributions of defects of

triangles formed by all combinations of protons
and all combinations of π mesons registered in

the reaction p (10 GeV/c) +C: � Å p exp.; � Å
p sim.; � Å π exp.; � Å π sim.

equivalent to statements formulated in terms of
angles between beams.

Thus, the degree of ®hardness¯ of interac-
tions can be analyzed using the values of the
angles of the triangles in the rapidity space.
Figure 8 shows the ρ23 distributions of protons
for the selected angle α3 intervals. The regions
of ρ23 in the vicinity of 0 and 3 corresponding
to the target and projectile fragmentation, re-
spectively, can be extracted using the variable
α3 (the angle between the rapidities ρ12 and
ρ13).

A triangle is characterized by its defect,
which is proportional to the area of the trian-
gle (the constant of proportionality equals to
square curvature of the space):

defect = π − α1 − α2 − α3. (15)

Angular defect is the scalar characteristic
of relative position of trios of particles in the
rapidity space. Figure 9 shows the distributions of defects of triangles formed by all com-
binations of protons and all combinations of π mesons registered at interaction of 10-GeV/c
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protons with carbon. The defect distribution for proton trios, as seen from the ˇgure, has
an exponential shape; i.e., the probability of observing three protons ®far¯ from each other
(in terms of rapidity) drops exponentially. It should be noted that the data on protons from

Fig. 10. Defect vs. perimeter for the trian-

gles formed by combinations of three particles:

point 1 Å projectile, point 2 Å target, point
3 Å any π meson registered in the reaction

p (10 GeV/c) +C → π (�)

Fig. 11. Defect vs. (ρ12 − ρ13), where ρ12 is the projectileÄtarget relative rapidity and ρ13 is the

projectileÄparticle relative rapidity for protons produced in the reaction p (10 GeV/c) + C: the experi-
mental (a) and simulated (b) data; and in more detail the region near zero: the experimental (c) and

simulated (d) data
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the RQMD simulation [13] agrees very well with the experiment. The defect distribution for
π mesons has another shape Å these trios form triangles of larger area in the rapidity space,
as compared to protons. Note that the model adequately reproduces inclusive spectra of both
protons and π mesons. The distribution of trios of π mesons, however, differs noticeably
from the experimental data.

Let us illustrate another general property of particle distributions in the rapidity space.
Consider combinations of three particles: point 1 Å projectile, point 2 Å target, and point
3 Å any registered particle. Figure 10 shows the defects of such triangles as functions of

Fig. 12. The ratio defect/perimeter vs. the difference
of the angles as the target and at the projectile for π

mesons measured in the reaction p (10 GeV/c) + C.
Prevalence of certain symmetric structures is ob-

served

their perimeters calculated for the experi-
mental data on π-meson production in the
reaction p (10 GeV/c) + C. For a certain
perimeter, particles with maximum allowed
defects are produced with higher probabil-
ity. This is consistent with the known fea-
ture that cross sections grow towards the
phase space boundary, and agrees with the
simulation [13].

Figure 11 shows the plots of defect
vs. (ρ12 − ρ13) for the experimental and
simulated protons produced in the reaction
p (10 GeV/c) + C. It is seen that the model
does not reproduce the peculiarities of the
transition region, ρ ∼ 1 (Fig. 11, a, b).
The target fragmentation region is shown
in more detail in Fig. 11, c, d. It is seen
that the speciˇc ˇne structure of proton dis-
tribution corresponding to symmetric con-
ˇgurations in the rapidity space is not re-
produced by the model. In this region the
peculiarities in the cross sections of the reg-
istered protons correspond to isosceles triangles, when relative targetÄprojectile and projectileÄ
registered particle rapidities are close. Higher probability of particle production is observed
also when relative targetÄparticle and projectileÄparticle rapidities become close (the symmet-
ric position of the registered particle with respect to the colliding nuclei). Figure 12 illustrates
the above idea for π mesons.

It is important to stress that, unlike the Euclidean space, the area-to-perimeter ratio for
triangles in the Lobachevsky space is limited.

CONCLUSION

The uniˇed relativistically invariant criteria for particle classiˇcation, for example, se-
lection of ®stripping¯ and ®evaporating¯ protons, can be formulated on the basis of spatial
rapidities (angles). It is possible to select particles produced by different mechanisms using
such characteristics in the Lobachevsky space as defect and perimeter.
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The analysis of the data obtained using the propane bubble chamber showed that the
general character of particle distributions in the 4-velocity space is similar for different
reactions and does not depend on multiplicity.

The comparison of experimental data and the simulation showed that the RQMD model
[13], while adequately reproducing integral characteristics of particle distributions Å inclusive
spectra, ˇlling of phase space, is incapable of correct reproduction of two- and three-particle
correlations.

Taking into account the properties of the Lobachevsky space, in particular, that there is
no geometric similarity (unlike the Euclidean geometry), is very important for analysis of
experimental data and construction of models of multiple particle production.
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