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We applied the Principal Component Analysis (PCA), namely, the ®Caterpillar¯-SSA approach [1,
2], to the network trafˇc measurements. This approach proved to be very efˇcient for understanding the
main features of terms forming the network trafˇc. The statistical analysis of leading components has
demonstrated that even a few ˇrst components form the main part of information trafˇc. The residual
components play the role of small irregular variations which do not ˇt in the basic part of the network
trafˇc and can be interpreted as a stochastic noise. Based on the feature characteristics of residual
components, we developed a statistical method for the selection and elimination of residuals from the
whole set of principal components.

ŒÒ ¶·¨³¥´¨²¨ ³¥Éµ¤ £² ¢´ÒÌ ±µ³¶µ´¥´Éµ¢,   ¨³¥´´µ ¶µ¤Ìµ¤ ®Caterpillar¯-SSA, ¤²Ö  ´ ²¨§ 
¨§³¥·¥´¨° ¨´Ëµ·³ Í¨µ´´µ£µ É· Ë¨± . �ÉµÉ ¶µ¤Ìµ¤ µ± § ²¸Ö µÎ¥´Ó ÔËË¥±É¨¢´Ò³ ¤²Ö ¶µ´¨³ ´¨Ö
µ¸´µ¢´ÒÌ µ¸µ¡¥´´µ¸É¥° Î²¥´µ¢, µÉ¢¥É¸É¢¥´´ÒÌ §  Ëµ·³¨·µ¢ ´¨¥ ¸¥É¥¢µ£µ É· Ë¨± . ‘É É¨¸É¨Î¥¸±¨°
 ´ ²¨§ £² ¢´ÒÌ ±µ³¶µ´¥´Éµ¢ ¶µ± § ², ÎÉµ Ê¦¥ ´¥¸±µ²Ó±µ ¶¥·¢ÒÌ ±µ³¶µ´¥´Éµ¢ Ëµ·³¨·ÊÕÉ µ¸´µ¢-
´ÊÕ Î ¸ÉÓ ¨´Ëµ·³ Í¨µ´´µ£µ É· Ë¨± . �¸É ÉµÎ´Ò¥ ±µ³¶µ´¥´ÉÒ, ±µÉµ·Ò¥ ´¥ ¸²¥¤ÊÕÉ µ¸´µ¢´µ³Ê
§ ±µ´Ê ¸¥É¥¢µ£µ É· Ë¨± , ³µ£ÊÉ ¡ÒÉÓ ¨´É¥·¶·¥É¨·µ¢ ´Ò ± ± ¸²ÊÎ °´Ò° ÏÊ³. ˆ¸¶µ²Ó§ÊÖ Ì · ±-
É¥·´Ò¥ µ¸µ¡¥´´µ¸É¨ µ¸É ÉµÎ´ÒÌ ±µ³¶µ´¥´Éµ¢, ³Ò · §· ¡µÉ ²¨ ¸É É¨¸É¨Î¥¸±¨° ³¥Éµ¤, ¸ ¶µ³µÐÓÕ
±µÉµ·µ£µ ³µ¦´µ µÉ¡¨· ÉÓ É ±¨¥ ±µ³¶µ´¥´ÉÒ ¸ Í¥²ÓÕ ¨Ì ¨¸±²ÕÎ¥´¨Ö ¨§ ¢¸¥£µ ´ ¡µ·  £² ¢´ÒÌ
±µ³¶µ´¥´Éµ¢.

INTRODUCTION

We applied [3] a nonlinear time series analysis [4] to the trafˇc measurements obtained
at the input of the intermediate-size Local Area Network (LAN). We have demonstrated that
nonlinear techniques can be successfully used for a deeper understanding of main features of
the trafˇc data. At the same time, we found that due to a very complicated character of trafˇc
series the traditional algorithms of nonlinear analysis do not give reliable estimations of the
analyzed time series. For instance, the GrassbergerÄProcaccia algorithm gives a very high
dimension for original trafˇc measurements. However, after ˇltering out a high-frequency
component, which can be considered as a noise, we obtained a more realistic result for the
embedding dimension of the underlying process. This result has been conˇrmed independently
by the Principal Component Analysis (PCA) method [3] in the framework of the ®Caterpillar¯Ä
Singular Spectrum Analysis (SSA) approach [1,2].

The Principal Component Analysis is a well-known technique in multivariate data analysis
[5Ä9]. The PCA method consists in applying a linear transformation of the original data
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space into a feature space, where the data set may be represented by a reduced number of
®effective¯ features and yet retains most of the intrinsic information content of the data. The
®Caterpillar¯-SSA approach is a novel scheme, which is very efˇcient for the analysis of time
series corresponding to any arbitrary signal [1, 2].

In our study we use the trafˇc measurements obtained at the input of Dubna University [10]
LAN, which includes approximately 200Ä250 interconnected computers. We describe in Sec. 1
the data acquisition system of this LAN, realized on the basis of a standard PC. In Sec. 2 we
present the basic concept of the ®Caterpillar¯-SSA scheme. In Sec. 3 we apply this technique
to the trafˇc measurements and analyze leading components responsible for the main part
of the network trafˇc. In Sec. 4 we study the residual components and propose a statistical
method for their selection and elimination from the whole set of principal components.

1. DATA ACQUISITION SYSTEM

The measurements of network trafˇc have been realized at the external side of the input
lock of LAN. The performance of the data acquisition system is based on realization of an
open mode driver [11] (see Fig. 1).

Fig. 1. Scheme of a data acquisition system
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In standard conditions the network adapter of a computer is in a mode of detecting a
carrying signal (main harmonic 4Ä6 MHz). After appearance in the cable bits of the package
preamble, the network adapter comes to a mode of 1 bit and 1 byte synchronization with the
transmitter and starts receiving ˇrst bytes of the package heading. As soon as one succeeds
in extracting the MAC-address of the shot receiver from the ˇrst bytes taken by the adapter,
the network adapter compares it to its own. If the result of the comparison is negative, the
network adapter ceases to record the shot's bytes into its internal buffer and cleans its contents
and then waits until the next package appears.

In order to provide conditions for reception and analysis of all the packages transmitted
over the network, it is necessary to move the adapter devices to a free mode when all possible
shots are recorded in the buffer. This operation is executed through the instructions of the
NDIS driver.

The free-mode driver records the accepted packages in the preliminary capture buffer and
displays the �ag of receiving the package. Then the receiving package module is activated
and analysis of the margin of the package's type is carried out to extract TCP/IP packages
from the whole stream.

After identiˇcation it is possible to separate and delete the data block as well as to record
the headers to the SQL-server database. The recording is performed together with the time
data with a frequency up to 10 kHz. Although the recording is performed with buffering, the
mode of saving the packages' headers requires enormous server's resources, as in this case
there is a permanent procedure of recording with small portions to the hard disk. That is why
this mode is switched on if required at the management system's instruction.

Fig. 2. Trafˇc measurements aggregated with different bin sizes: 0.1 s (a), 1 s (b) and 10 s (c)

The system also provides control over the external trafˇc of the local area network on the
basis of checking records in the router table. Initial information on the legal IP addresses is
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saved in the database of the LAN computers from which data on legal addresses are loaded
into the main memory array. The users which do not participate in forming the external trafˇc
are not taken into account when calculating the number of transferred and received bytes. In
order to decrease the number of sessions of recording the information on the external trafˇc
in the database, a timer of load out of the buffer and a timer of changing a current date have
been introduced into the system.

The recorded trafˇc data correspond approximately to 20 h (1 600 000 records with a
frequency up to 10 kHz, which corresponds to 1-ms bin size) of measurements. The part of
this series corresponding approximately to one hour of measurements and aggregated with
different bin sizes is presented in Fig. 2. Two protocols are used in the ®Dubna¯ LAN.
The NetBEUI protocol is applied only for internal exchanges, and the TCP/IP for external
communications. The contribution of the NetBEUI trafˇc has been estimated around 1Ä6
packages per second during daily working hours. This is negligibly small compared to the
TCP/IP trafˇc. In this connection, we may neglect the in�uence of non-IP trafˇc on the
TCP/IP trafˇc.

2. BASIC CONCEPT OF THE ®CATERPILLAR¯-SSA TECHNIQUE

The ®Caterpillar¯-SSA approach [1,2] is applied to the analysis of time series correspond-
ing to any arbitrary signal f(t), with t > 0 determined in equidistant points. The basic
®Caterpillar¯-SSA scheme includes four main steps:

1) transformation of one-dimensional series into multidimensional form,
2) singular value decomposition of the multidimensional series,
3) principal component analysis and selection of feature components,
4) reconstruction of one-dimensional series using the selected components.
The transformation of one-dimensional series

xi = f(ti) = f [(i − 1)∆t], i = 1, 2, . . . , K (1)

into a multidimensional series is realized by representing (1) in matrix form:

X = (xij)
k,L
i,j=1 =




x1 x2 x3 . . . xL

x2 x3 x4 . . . xL+1

x3 x4 x5 . . . xL+2

...
...

...
. . .

...
xk xk+1 xk+2 . . . xK




, (2)

where L < K is called the caterpillar length and k = K − L + 1.
Then the eigenvalues λi (i = 1, 2, . . . , L) and eigenvectors Vi (i = 1, 2, . . . , L) of the

covariance matrix C = (1/k)XXT are determined. The matrix of eigenvectors V is used for
transition to principal components:

Y = V T X = (Y1, Y2, . . . , YL) , (3)

where Yi (i = 1, 2, . . . , L) are rows of k elements.
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The equality
L∑

i=1

λi

L
=

L∑
i=1

αi = 1

permits one to estimate the contribution αi (in decreasing order) of the ith principal component
into the analyzed series.

This contribution can be interpreted as fraction of information related to a single com-
ponent, and it helps, together with analytical and visual analysis of eigenvectors and prin-
cipal components, to select feature components for reconstruction of one-dimensional series.
Usually the selection of speciˇc components depends on a goal which we pursue and the
information content of particular components (see, for example, [12Ä14, 1, 2]).

3. PCA OF TRAFFIC MEASUREMENTS:
ANALYSIS OF LEADING COMPONENTS

The ®Caterpillar¯-SSA approach foresees a preliminary centering and normalization of
time series to be analyzed. Depending on the character of the series this procedure can be
applied separately, altogether or even not applied at all. Unfortunately, the authors of [1,
2] do not propose exact recommendations for such a procedure. Based on our preliminary
analysis, the trafˇc series has been centered but not normalized.

The caterpillar length (or window) CL has been chosen based on the analysis of the
autocorrelation function for trafˇc measurements [3]. In this study we used different values
of CL, starting from the minimal value CL = 12 up to CL = 20.

Figure 3 shows part of the daily trafˇc measurements aggregated with the bin size 1 s,
which has been used in this study.

Fig. 3. Trafˇc measurements aggregated with the bin size 1 s

One of the main results of the application of the ®Caterpillar¯-SSA technique to the
analyzed series is presented in Fig. 4, where the contribution of the eigenvalues on a percentage
basis for CL = 12 and 20 is shown. This information permits one to estimate the number of
principal components, which effectively contribute to the analyzed series.
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Fig. 4. Contributions of eigenvalues on a percentage basis for original trafˇc measurements: CL = 12 (a)
and CL = 20 (b)

Table 1. Results of ˇtting the packet size distributions, corresponding to N leading components, by
the log-normal function (2)

N , leading comp. σ µ ν χ2

1 0.273 ± 0.009 10.44 ± 0.01 47 87.49
2 0.304 ± 0.005 10.40 ± 0.01 44 66.82
3 0.349 ± 0.007 10.38 ± 0.01 47 53.10
4 0.377 ± 0.008 10.37 ± 0.01 47 63.52
5 0.420 ± 0.011 10.35 ± 0.01 47 68.50
6 0.432 ± 0.012 10.34 ± 0.01 46 59.12
7 0.426 ± 0.008 10.35 ± 0.01 47 49.03
8 0.444 ± 0.007 10.34 ± 0.01 47 34.39
9 0.463 ± 0.008 10.33 ± 0.01 43 38.94
10 0.482 ± 0.009 10.32 ± 0.01 47 37.76
11 0.489 ± 0.008 10.31 ± 0.01 47 55.64
12 0.500 ± 0.009 10.32 ± 0.01 47 59.00
13 0.506 ± 0.008 10.32 ± 0.01 43 51.97
15 0.518 ± 0.009 10.31 ± 0.01 46 55.16
17 0.516 ± 0.008 10.30 ± 0.01 47 78.59
19 0.513 ± 0.008 10.30 ± 0.01 44 101.6

Taking into account [16], it is reasonable to assume that the packet size distributions,
corresponding to leading components, may be described by the log-normal distribution. In
order to check whether these distributions follow the log-normal form, we ˇtted them by the
log-normal function [17]:

f(x) =
A√
2πσ

1
x

exp
[
− 1

2σ2
(ln x − µ)2

]
, (2)
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where σ and µ are parameters and A is a normalizing factor. The ˇtting procedure has been
realized with the help of the MINUIT package [18] in the framework of the well-known
Physical Analysis Workstation (PAW, see details in [19]).

We present in Table 1 the results of ˇtting the packet size distributions, corresponding to
different number N of leading components (the results presented here are for CL = 20), by
function (2). Here ν is the number of degrees of freedom for the χ2 test.

Fig. 5. The dependence of χ2/ν versus the number of leading components N

Fig. 6. Fitting the distribution corresponding to N = 3 leading components by function (2)

Fig. 7. Time series corresponding to three leading components (after subtraction of the caterpillar

average value)
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Fig. 8. Autocorrelation function C(τ ) of recon-

structed series corresponding to a different number
of leading components: 1 Å one leading component;

2 Å two leading components; 3 Å three leading

components; 4 Å original data

Figure 5 shows the dependence of χ2/ν
on N (for CL = 20). Two lines parallel
to the abscissa axis show the signiˇcance
levels (or the probability that the observed
chi squared will exceed the value χ2 by
chance even for a correct model: see, for
instance, [15, 17]) α = 10% (the top line,
χ2/ν = 1.247) and α = 89.5% (the bottom
line, χ2/ν = 0.732) corresponding to the χ2

test for ν = 47.
This dependence demonstrates that the

testing distribution does not pass the null
hypothesis (2), when only the ˇrst lead-
ing component is taken into account. Then,
with the increase of N , the value of χ2 is
rapidly decreasing, and for N = 3 one can
see a quite good level of correspondence
(α = 22%) of the distribution to the null
hypothesis (Fig. 6).

This result is of great interest because only three ˇrst components (of 20) form the fun-
damental part of the information trafˇc. Figure 7 shows the series reconstructed on the
basis of the ˇrst, second and third leading component, correspondingly, after the subtraction

Fig. 9. Fitting the distribution corresponding to

eight leading components by function (2)

of the caterpillar average value. Figure 8
presents the dependence of the autocorrelation
function

C(τ) =

K∑
i=1

(xi+τ − x̄)(xi − x̄)

K∑
i=1

(xi − x̄)2
, x̄ =

1
K

K∑
i=1

xi.

(3)
One can see from these ˇgures that the au-

tocorrelation function corresponding to the sum
of three leading components is close to the auto-
correlation function for the original data. Their
summary contribution to the general dispersion
is around 40% (see Fig. 4 for CL = 20).

This result has been conˇrmed for the shorter
caterpillar length, CL = 12. In this case only
two leading components, their lump contribution
approximately coinciding with the contribution
of the three leading components for CL = 20 (see Fig. 4), reproduce the log-normal form of
the trafˇc.

Further increase of N leads to unexpected increase of χ2 (for N = 4 and 5) together
with the decrease of the signiˇcance level below 10%. Then the value of χ2/ν rapidly
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decreases and reaches its record minimal value 0.732 for N = 8. The corresponding statistical
distribution is presented in Fig. 9. It demonstrates both a very good level of correspondence
of the reconstructed distribution to the null hypothesis (α = 89.5%) and a reliable accuracy
of approximation for all regions of the analyzed distribution. The summary contribution of
eight leading components into the general dispersion is around 66%.

Figure 10 shows the reconstructed series using the ®Caterpillar¯-SSA method (for CL =
20) on the basis of eight leading components. One can clearly see that it reproduces charac-
teristic features of the original series presented in Fig. 3.

Fig. 10. Trafˇc series measurements reconstructed by the caterpillar method (for CL = 20) on the basis
of eight leading components

4. PCA OF TRAFFIC MEASUREMENTS:
ANALYSIS OF RESIDUAL COMPONENTS

In the region of large N there is a growth of χ2, especially noticeable at N � 15 (see
Fig. 5). Such a tendency may be caused by the in�uence of the residual components related
to small irregular variations, which do not ˇt in the basic model of the network trafˇc (2) and
can be interpreted as stochastic noise.

Figure 11 shows a series reconstructed on the basis of the smallest residual component,
namely, component 20. One can clearly see that this series has a signiˇcantly different
character compared to the original trafˇc measurements. It looks like a nonstationary process
symmetric against zero mean value.

Figure 12 shows the statistical distribution corresponding to the series presented in Fig. 11.
It quite well follows the Gaussian distribution which is conˇrmed by the χ2 test (see Fig. 12).
The autocorrelation function of the corresponding series shows that it behaves like noise.

However, when increasing the number of residual components, their summary distribution
quickly starts losing the symmetric form together with growth of correlations between the
series terms.

In order to estimate the amount of residual components that can be eliminated from
the original time series without in�uence on its fundamental part, we divide all principal
components into two parts:
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Fig. 11. Trafˇc series reconstructed by the caterpillar method (CL = 20) on the basis of the smallest
component

Fig. 12. Statistical distribution of the time series

presented in Fig. 11; the ˇtting curve corresponds to
the Gaussian distribution

• ˇrst part corresponding to the lead-
ing components and responsible for the log-
normal form of the packet size distribution,

• second part related to residual com-
ponents, which is described by a symmet-
ric statistical distribution and behaves like
a stochastic noise.

As criterion for selection of the second
part we used the ®moment¯ of the symme-
try violation for the series corresponding
to the residual components. A well-known
sign test has been used for testing the sym-
metry against zero of residual distributions.
The sign test has the following form:

µ =
n∑

i=1

Θ(Xi), (4)

where X1, . . . , Xn are observables; n is the
sample size, and Θ is the Heaviside func-
tion:

Θ(x) =

{
1, x > 0,

0, x � 0.

When the null hypothesis is valid, the µ distribution is approximated (in case of large n) by

P{µ � m | n, p} ≈ Φ

(
m − np + 0.5√

np(1 − p)

)
,
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where Φ is the distribution function of the normal distribution; p = 0.5 and n = 2048
(in our case).

Figure 13 shows the dependence of the µ value versus the number of residual components
(for caterpillar lengths 12 and 20). It is clearly seen that the µ value exceeds the reliable
conˇdential level, when the number of residual components is greater than 6 for CL = 12
and 11 for CL = 20.

Fig. 13. The values of the sign test µ versus the number of residual components for the caterpillar

length CL = 12 (a) and CL = 20 (b)

In order to conˇrm the results obtained by the sign test, we applied a more powerful
criterion based on the ω2

n statistics [20]. This criterion tests the symmetry against x = 0
of the distribution function F (x) for observables X1, . . . , Xn, i. e., the null hypothesis H0:
F (x) = 1 − F (x). The corresponding ω2

n statistics has the form:

ω2
n = n

∞∫

−∞

[Fn(x) + Fn(−x) − 1]2 dFn(x), (5)

where Fn(x) is the empirical distribution function. It is more convenient to calculate the
values of the statistics (5), using the following formula:

ω2
n =

n∑
j=1

[
Fn(−X(j)) −

n − j + 1
n

]2

,

where X(1) � . . . � X(n) is the variational series constructed on the basis of observables.
Figure 14 shows the dependences of ω2

n values on the number of residual components
for two cases of the caterpillar length: CL = 12 and 20. These dependences have distinct
characteristic features at k = 4 for CL = 12, and k = 7 for CL = 20 (one can see that the
number of such components approximately equals to one third of the caterpillar length), after
which, when k is increasing, there is a quick rise of ω2

n. This rise means that the residual
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Fig. 14. The dependences of ω2
n values on the number of residual components for two cases of caterpillar

length: CL = 12 (a) and CL = 20 (b)

series loses its symmetric character, because in the second part the components responsible
for the log-normality are involved.

One can see from Fig. 14 that the number of residual components k = 6 for CL = 12
and k = 11 for CL = 20 correspond to the 5%-signiˇcance level for the ω2 criterion. This
coincides with the result obtained for the sign test (Fig. 13). These estimates of the number of
components, which do not noticeably in�uence the fundamental part of trafˇc, qualitatively
coincide with the result obtained in Sec. 3 applying the χ2 test (Fig. 5).

CONCLUSION

We applied the ®Caterpillar¯-SSA approach [1,2], which is an extension of the principal
component analysis, to network trafˇc measurements, in order to understand the main features
of the principal components of the network trafˇc. Our analysis of the leading components has
shown that a few ˇrst components alone form the fundamental part of the information trafˇc
and that the correspondence to the log-normal distribution remains valid up to intermediate
values of N . In the region of large N there was found a noticeable growth of χ2, which
can be explained by the in�uence of residual components related to small irregular variations.
Based on feature characteristics of residual components, we developed a statistical method
that permits one to estimate the number of components which do not play a noticeable role
in the fundamental part of trafˇc and can be eliminated from the whole set of components.

Thus, the statistical analysis of trafˇc measurements based on the joint application of χ2

and ω2 tests gives the possibility of splitting the whole set of components into two classes.
The ˇrst class includes the leading components responsible for the main contribution to the
trafˇc, and the second class involves residual contributions that can be interpreted as noise.
A more detailed analysis of the boundary region between these two groups may provide
additional information on trafˇc components and thus simplify the understanding of trafˇc
dynamics.
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